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Today 

• Some clarifications from last week’s coursework
• More on reasoning:

• extension of the tableau algorithm & discussion of blocking 
• traversal or “how to compute the inferred class hierarchy”
• OWL profiles

• The OWL API: a Java API and reference implementation for 
• creating, 
• manipulating and 
• serialising OWL Ontologies and 
• interacting with OWL reasoners 

• Lab:
• OWL API for coursework 
• Ontology Development
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Some clarifications from last week’s coursework
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• OWL is based on Description Logics 
• we can use DL syntax 
• e.g., C ⊑ D  for C SubClassOf D 

• An OWL ontology O is a document: 
• therefor, it cannot do anything - as it isn’t a piece of software! 
• in particular, it cannot infer anything 

• An OWL ontology O is a web document: 
• with ‘import’ statements, annotations, …  
• corresponds to a set of logical OWL axioms  
• the OWL API (today) helps you to  

• parse an ontology 
• access its axioms   

• a reasoner is only interested in this set of axioms  
• not in annotation axioms 
• see https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations 
• https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations 

Ontologies, inference, entailments, models

https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
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• We have defined what it means for O to entail an axiom C SubClassOf D 
• written O ⊨ C SubClassOf D or O ⊨ C ⊑ D  
• based on the notion of a model I of O 

• i.e., an interpretation I that satisfies all axioms in O 
• don’t confuse ‘model’ with ‘ontology’ 

• one ontology can have many models 
• the more axioms in O the fewer models O has 
 

• A DL reasoner can be used to  
• check entailments of an OWL ontology O and  
• compute the inferred class hierarchy of O  

• this is also known as classifying O 
• e.g., by using a tableau algorithm 

Ontologies, inference, entailments, models (2)
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More on Reasoning
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O 

Theorem: 
1. O is consistent iff O ⊧ Thing SubClassOf Nothing 
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O) 
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent 
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent 

Recall Week 2: OWL 2 Semantics: Entailments 
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O 

• O is coherent if every class name that occurs in O is satisfiable w.r.t O 
• Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
2. checking, for each pair A,B of class names in O plus Thing, Nothing  

O ⊧ A SubClassOf B 
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A 

…and returning the result in a suitable form: O’s inferred class hierarchy

Recall Week 2: OWL 2 Semantics: Entailments etc.
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Last week, you saw a tableau algorithm that    
• takes a class expression C and decides satisfiability of C 
• i.e., it  

• answers ‘yes’ if C is satisfiable 
                ‘no’ if C is not satisfiable 

• sound, complete, and terminating 

• we saw this for the ALC fragment of OWL  
• (ALC is a Description Logic that forms logical basis of OWL) 
• only and, or, not, some, only  

• works by trying to generate an interpretation with an instance of C 
• by breaking down class expressions (in NNF!)  
• generating new P-successors for some-values from restrictions  

                                                      (∃P.C restrictions in DL)  

• we can handle an ontology that is a set of acyclic SubClassOf axioms 
• via unfolding (check Week 3 slides!)

Week 3 (before Easter): how to test satisfiability …
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Week 3 (before Easter): tableau rules

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	
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• Apply the tableau algorithm to test whether A is satisfiable w.r.t. 

Mini-exercise

{A SubClassOf B and (P some C), 
 A SubClassOf C and (P only (not C or D)}  
            

{A ⊑ B ⊓ ∃P.C,  
 B ⊑ C ⊓ ∀P.(¬C ⊔ D) }
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• When writing an OWL ontology in Protégé,  
• axioms are of the form A SubClassOf B with A a class name 
• (or A EquivalentTo B with A a class name) 

• last week’s tableau handles these via unfolding:  
• works only for acyclic ontologies 
• e.g., not for A SubClass (P some A) 

• but OWL allows for general class inclusions (GCIs), 
• axioms of the form A SubClassOf B with A a class expression 
• e.g., (eats some Thing) SubClassOf Animal  
• e.g., (like some Dance) SubClassOf (like some Music) 
• this requires basically another rule: 

This week: GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…} 

for each C ⊑ D ∈ O
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• E.g., test whether A is satisfiable  
         w.r.t. {A SubClassOf (P some A)}  
             or {A ⊑ ∃P.A }

GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…} 

for each C ⊑ D ∈ O

…

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

P  

P  

P  

P  

• This rule easily causes non-termination 
• if we forget to block
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• Blocking ensures termination 
• even on cyclic ontologies  
• even with GCIs 

• If x’s node label is contained in  
the label of a predecessor y, we say  
“x is blocked by y” 

• E.g., test whether A is satisfiable  
         w.r.t. {A SubClassOf (P some A)} 
• here, n2 is blocked by n1

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x 

P  
n1  

n2  
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• When blocking occurs, we can build  
a cyclic model from a  
complete & clash-free completion tree 
• hence soundness is preserved!

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	
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Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x 

P  
n1  

n2  
P  
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Our ALC tableau algorithm with blocking is  
• sound: if the algorithm stops and says “input ontology is consistent”  

   then it is.  
• complete: if the input ontology is consistent,  

   then the algorithm stop and says so.  
• terminating: regardless of the size/kind of input ontology,  

   the algorithm stops and says  
• either “input ontology is consistent” 
•      or “input ontology is not consistent” 

• …i.e., a decision procedure for ALC ontologies 
• even in the presence of cyclic axioms!

Tableau algorithm with blocking
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Our ALC tableau algorithm has a few sources of complexity  
• the breadth/out-degree of the tree constructed 
• the depth of/path length in tree constructed 
• non-determinism due to →⊔  rule from 

• disjunctions in O, e.g., A SubClassOf B or C 
• SubClassOf axioms in O 
• EquivalentTo axioms in O

Tableau algorithm & complexity not too bad: 
bounded by number 
of ‘some’ 
expressions in O

•ok/linear for acyclic O 
•bad/exponential for  
                     general O:  
we can construct O  
     of size n  
where each model has  
     a path of length 2n

1 disjunction  
per axiom in O  
for each node in tree 

2 disjunctions  
per axiom in O  
for each node in tree 

hopefully not 
too bad

3 nodes with  
25 SubClassOf  
axioms →  
how many  
choices?
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• Without further details: deciding ALC satisfiability  
• only of class expressions is PSpace-Complete 
• of class expressions w.r.t. ontology is ExpTime-complete 
• …much higher than intractable/SAT 

• Implementation of ALC or OWL tableau algorithm requires optimisation 
• there has been a lot of work in the last ~25 years on this  
• you see the fruits in Fact++, Pellet, Hermit, Elk, …in Protégé 
• some of them from SAT optimisations, see COMP60332 

• Next, I will discuss 1 optimisation: enhanced traversal

Tableau algorithm & complexity 
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• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?
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• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?

1 test

n2 tests for O with  
n class names

nm tests for O with  
n class names, m individuals
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Assume you have, so far,  
constructed the right hierarchy  
for O 

• Now you “trickle” Oak: check whether 
•  O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child 
• O ⊧ Oak ⊑ Animal? 

no - ignore Animal’s children!  
• O ⊧ Oak ⊑ Tree?  

yes - done!  
➡ 2 entailment tests saved!  

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Potentially avoids many of the n2  satisfiability/consistency tests 
• very important in practice 
• different variants have been developed 

• Just one of many optimisations!

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

TunaDuck SharkEagleOak
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• Despite all optimisations, classification of an ontology may still take too long 
 if it is  
• big and/or 

• 300,000 axioms or more  
• rich  

• ALC plus inverse properties, atleast, atmost, sub-property chains,…  

• For OWL 2 [*], profiles have been designed 
• syntactic fragments of OWL obtained by restricting constructors available 

• Each profile is  
• maximal, i.e., we know that if we allow more constructors,  

                  then computational complexity of reasoning would increase 
• motivated by a use case

OWL Profiles

[*] the one we talk about here/you use in Protégé
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In a nutshell, these are the profiles of OWL 2: 
  
• OWL 2 EL:  

• only ‘and’, ‘some’, SubProperty, transitive, SubPropertyChain 
• designed for big class hierarchies  

• OWL 2 QL:  
• only restricted ‘some’, restricted ‘and’, inverseOf, SubProperty 
• designed for querying data in a database through a class-level ontology 

• OWL 2 RL:  
• no ‘some’ on RHS of SubClassOf, … 
• designed to be implemented via a classic rule engine   

• For details, see OWL 2 specification!  

• Note: OWL Lite was a profile of OWL (1). 

OWL Profiles



All Problems

Some Key Complexity Classes
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Semi-Decidable

Decidable

NP

P

FO 
Predicate 
Logic

Propositional 
Logic

OWL 2 

OWL 2 EL



The Design Triangle

2

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy 

vs.
Cognitive Complexity)

Computability
(vs. Computational and 

Implementational Complexity)

26

The design triangle
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OWL reasoning 
  
• is unusual:  

• standard reasoning involves solving many reasoning problems/
satisfiability tests 

• is decidable:  
• for standard reasoning problems, we have decision procedures 
• i.e., a calculus that is sound, complete, and terminating 

• can be complex 
• but we know the complexity for many different DLs/OWL variants/profiles   
• and implementations require many good optimisations!     

• goes beyond what we have discussed here  
• entailment explanation 
• query answering  
• module extraction 
• …

Summary
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Coursework:  
The Sushi Ontology 
•  In addition to the weekly tasks, there is a modelling task that spans the entire 
course. We will go through steps of ontology building process including the 
identification of Competency Questions, performing Knowledge Acquisition, 
developing the Formalisation and Evaluating the results. 
•  The domain for this ontology will be Sushi.  
•  Ontology building is usually a collaborative process, and this task will be 
done in small groups (of 3 students).  

–  You have already been allocated to groups (see BB), although formal 
group work does not begin until Week 2. 

•  Following the development of the ontology, you will be asked to provide an 
evaluation of two ontologies from other groups. 

–  You will be assessed on how well you have performed this evaluation 
process, but the results of your evaluations will not contribute towards 
assessment of the other ontologies.  

•  You will also be required to provide individual reports discussing your 
ontology and the process that you went through in developing it.  

Remember: 


