
1

OWL, Patterns, & FOL
COMP62342

Sean Bechhofer 
sean.bechhofer@manchester.ac.uk 

Uli Sattler  
uli.sattler@manchester.ac.uk

2

A reminder: quotations and citations

• Citations [4] inform us where you got an  
idea/approach/result/technique/term…from

• Reference its source when you take an idea/result/example/…

• Quote marks “…” inform us where you got a phrase/sentence/paragraph
from

• Quote when you take a sentence & reference its source! 
…even if it’s only 1 sentence or a short poem on your mom’s birthday
card!

3

So far, we have looked at
• operational knowledge of OWL (FHKB)
• KR in general, its roles
• KA and competency questions
• formalising knowledge
• the semantics of OWL

4

Today:
• Semantic left-overs from last week
• Deepen your semantics: OWL & FOL & …
• Design Patterns in OWL

• local ones
• partonomies

• Design Principles in OWL:
• multi-dimensional modelling &
• post-coordination
• PIMPS - an upper level ontology

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

Left-overs from last week

5

6

OWL 2 Semantics: an interpretation satisfying … (2)

• An interpretation I satisfies an axiom α if
• α = C SubClassOf: D and CI ⊆ DI

• α = C EquivalentTo: D and CI = DI
• α = P SubPropertyOf: S and PI ⊆ SI

• α = P EquivalentTo: S and PI = SI
• …
• α = x Type: C and xI ∈ CI
• α = x R y and (xI ,yI) ∈ RI

• I satisfies an ontology O if I satisfies every axiom A in O
• If I satisfies O, we call I a model of O 

• See how the axioms in O constrain interpretations:
✓ the more axioms you add to O, the fewer models O has

• …they do/don’t hold/are(n’t) satisfied in an ontology
• in contrast, a class expression C describes a set CI in I

Check  
OWL 2 Direct Semantics  
for more!!!

From Last W
eek

7

Draw & Match Models to Ontologies!
O1 = {} I1:

Δ = {v, w, x, y, z}
 
CI = {v, w, y}
DI = {x, y} EI = {}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

O2 = {a:C, b:D, c:C, d:C}

O3 = {a:C, b:D, c:C, b:C, d:E}

O4 = {a:C, b:D, c:C, b:C, d:E
 D SubClassOf C}

O5 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C}

O6 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C,
C SubClassOf R only C }

I2:
Δ = {v, w, x, y, z}
 
CI = {v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

I3:
Δ = {v, w, x, y, z}
 
CI = {x, v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

I4:
Δ = {v, w, x, y, z}
 
CI = {x, v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {(x,x), (y,x)}
 
aI = v bI = x
cI = w dI = y

From Last Week

8

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O

Theorem:
1. O is consistent iff O ⊧ Thing SubClassOf Nothing
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O)
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent

OWL 2 Semantics: Entailments etc. (3)
From Last Week

9

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O

• O is coherent if every class name that occurs in O is satisfiable w.r.t O
• Classifying O is a reasoning service consisting of

1. testing whether O is consistent; if yes, then
2. checking, for each pair A,B of class names in O plus Thing, Nothing  

O ⊧ A SubClassOf B
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A

…and returning the result in a suitable form: O’s inferred class hierarchy

OWL 2 Semantics: Entailments etc. (3) ctd
From Last Week

10

A side note: Necessary and Sufficient Conditions

• Classes can be described in terms of necessary and sufficient conditions.
– This differs from some frame-based languages where we only have

necessary conditions.
• Necessary conditions

– SubClassOf axioms
– C SubClassOf: D…any instance of C is also an instance of D

• Necessary & Sufficient conditions
– EquivalentTo axioms
– C EquivalentTo: D…any instance of C is also an instance of D 

 and vice versa, any instance of D is also an instance of C
• Allows us to perform automated recognition of individuals,  

i.e. O ⊧ b:C

Constraints/Background knowledge

Definitions

OWL and Other Formalisms:
First Order Logic

Object-Oriented Formalisms

11

12

OWL and First Order Logic

• in COMP60332, you have learned a lot about FOL
• most of OWL 2 (and OWL 1) is a decidable fragment of FOL:

• …we assume that we have replaced each axiom C EquivalentTo D in O with  
C SubClassOf D, D SubClassOf C

• …what is ?

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8

13

OWL and First Order Logic

Exercise:
1. Fill in the blanks
2.Why is tx(C) a formula in 1 free variable?
3. translate O6 to FOL
4.…what do you know about the  

2 variable fragment of FOL?

O6 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C,
C SubClassOf R only C }

Relationship with First Order Logic II

Here is the translation tx() from an OWL ontology into FOL formulae in one free variable

tx(A) = A(x), ty(A) = A(y),

tx(not C) = ¬tx(C), ty(not C) = . . . ,

tx(C and D) = tx(C) ∧ tx(D), ty(C and D) = . . . ,

tx(C or D) = . . . , ty(C or D) = . . . ,

tx(r some C) = ∃y.r(x, y) ∧ ty(C), ty(r some C) = . . . ,

tx(r only C) = . . . , ty(r only C) =

• Fill in the blanks

•Why is tx(C) a formula in one free variable?

University of
Manchester

7

14

Object Oriented Formalisms

Many formalisms use an “object oriented model” with 

• Objects/Instances/Individuals
• Elements of the domain of discourse
• e.g., “Bob”
• Possibly allowing descriptions of classes

• Types/Classes/Concepts
• to describe sets of objects sharing certain characteristics
• e.g., “Person”

• Relations/Properties/Roles
• Sets of pairs (tuples) of objects
• e.g., “likes”  

• Such languages are/can be:
• Well understood
• Well specified
• (Relatively) easy to use
• Amenable to machine processing

15

Object Oriented Formalisms

OWL can be said to be object-oriented: 

• Objects/Instances/Individuals
• Elements of the domain of discourse
• e.g., “Bob”
• Possibly allowing descriptions of classes

• Types/Classes/Concepts
• to describe sets of objects sharing certain characteristics
• e.g., “Person”

• Relations/Properties/Roles
• Sets of pairs (tuples) of objects
• e.g., “likes”  

• Axioms represent background knowledge, constraints, definitions, …
• Careful: SubClassOf is similar to inheritance but different:

• inheritance can usually be over-ridden
• SubClassOf can’t
• in OWL, ‘multiple inheritance’ is normal

16

Other KR systems

• Protégé can be said to provide a frame-based view of an OWL ontology:
• it gathers axiom by the class/property names on their left 

• DBs, frame-based or other KR systems may make assumptions:
1. Unique name assumption

▪ Different names are always interpreted as different elements
2. Closed domain assumption

▪ Domain consists only of elements named in the DB/KB
3. Minimal models

▪ Extensions are as small as possible
4. Closed world assumption

▪ What isn’t entailed by O isn’t true
5. Open world assumption: an axiom can be such that

▪ it’s entailed by O or
▪ it’s negation is entailed by O or
▪ none of the above 

Question: which of these does
▪ OWL make?
▪ a SQL DB make?

17

Other KR systems: Single Model -v- Multiple Model

Multiple models:
• Expressively powerful
• Boolean connectives,

including not, or
• Can capture incomplete

information
• E.g., using or, some

• Monotonic: adding information
preserves entailments

• Reasoning (e.g., querying) is
often complex: e.g.,reasoning by
case

• Queries may give counter-
intuitive results in some cases

Single model:
• Expressively weaker (in most

respects)
– No negation or disjunction
• Can’t capture incomplete

information
• Often non-monotonic: adding

information may invalidate
entailments

• Reasoning (e.g., querying) is
often easy

• Queries may give counter-
intuitive results in some cases

18

Complete details about OWL

• here, we have concentrated on some core features of OWL, e.g., no
• domain, range axioms
• SubPropertyOf, InverseOf
• datatype properties
• …

• we expect you to look these up!  

• OWL is defined via a Structural Specification
• http://www.w3.org/TR/owl2-syntax/
• Defines language independently of concrete syntaxes
• Conceptual structure and abstract syntax
• UML diagrams and functional-style syntax used to define the language
• Mappings to concrete syntaxes then given.

• The structural specification provides the foundation for implementations (e.g.
OWL API as discussed later)

19

OWL Resources

• The OWL Technical Documentation is all available online from the W3C site. 
 
http://www.w3.org/TR/owl2-overview/ 
 
All the OWL documents are relevant; we recommend in particular the
• Overview
• Primer
• Reference Guide and
• Manchester Syntax Guide

• Our Ontogenesis Blog at
• http://www.sciencedirect.com/science/article/pii/S1570826808000413

http://www.w3.org/TR/owl2-overview/

20

Today:
✓Semantic left-overs from last week
✓Deepen your semantics: OWL & FOL & …
• Design Patterns in OWL

• local ones
• partonomies

• Design Principles in OWL:
• multi-dimensional modelling &
• post-coordination
• PIMPS - an upper level ontology

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

Patterns of axioms

• An axiom pattern is
• a recurring regularity in how axioms are used or appear  

within an ontology

• The most common is
• atomic SubClassOf axioms,  

i.e. SubClassOf axioms with class names on both sides
• … but they get much more complex than that

• Usually, we’re referring to syntactic patterns:
• how axioms are written,
• but remember “axioms” are inferred as well as written

21

Patterns and design patterns

• Software Design Patterns are
• well accepted solutions for common issues met in software construction

• Ontology Design Patterns ODPs are the same:
• well accepted solutions for common issues met in ontology construction
• but ontology engineers have barely agreed on well accepted problems,

let alone their solutions

• ODPs often depend on one’s philosophical stance … 
we’ll mostly talk about patterns as recurring regularities of asserted axioms

22

Coding style: term normalisation

• Is a sort of pattern…
• What we want is:

‣ Class names:
‣ singular nouns with
‣ initial capital letter,
‣ spaces via CamelCase

‣ Individual names:
‣ all lower case,
‣ spaces indicated by _

‣ Property names:
‣ initial lower case letter,
‣ spaces via CamelCase
‣ usually start with “is” or “has”

• All classes and individuals have a  
label, creator, description  
annotation property

23

Term normalisation ⊆ applied naming convention

• A naming convention determines
• what words to use, in
• which order and
• what one does about symbols and acronyms 

• Adopt one
• for both labels and URI fragments
• both for the URI fragment and for the label

• Having a label is a “good practice” 
 
 
 
 

24

“Glucose transport” vs  
“transport of glucose”

See http://ontogenesis.knowledgeblog.org/948 for an introduction

http://ontogenesis.knowledgeblog.org/948

How good names help modelling

• The help understanding relationships between terms: for example,
• Thigh, shin, foot and toe are not “leg”, but “leg part”
• Slice of tomato, tomato sauce, and tomato puree are not “Tomato” but

“Tomato based product”
• Eggs, milk, honey are not meat or animal, but “Animal Product”
• Vinegared Rice is not Sushi, but “part of Sushi” of “Sushi Ingredient” 

• Card sorting and the three card trick can help you here
• More on this later when we talk about upper level ontologies

25

Types of axiom patterns

• Domain modelling patterns: How to organise the axioms describing a
domain

• Works both in the
• large: the whole ontology – and in the
• small: how to describe a class/type of sushi

• Language patterns: Used to
• take advantage of language features or
• work around something missing in a language

• The latter are used in the former

26

A first Axiom Pattern: the Property Closure Pattern

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some VinegaredRice,
 hasIngredient some Fish

• Does Nigiri contain rice?
• Does Nigiri contain fish?
• Does Nigiri contain beef?

27

28

Fish

Beef

VinegaredRice

Nigiri

I1

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some VinegaredRice,
 hasIngredient some Fish

A first Axiom Pattern: the Property Closure Pattern

Fish

Beef

VinegaredRice

Nigiri

I2

hasIngredient

Which of these interpretations  
is a model of the above axiom?

29

Fish

Beef

VinegaredRice

Nigiri

I1

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some VinegaredRice,
 hasIngredient some Fish,
 hasIngredient only (Fish or VinegaredRice)

A first Axiom Pattern: the Property Closure Pattern

Fish

Beef

VinegaredRice

Nigiri

I2

hasIngredient

Use property closure pattern
to avoid unintended models!

OWL’s Open World Assumption (OWA)

• Unless we have ‘constrained’ something it may be possible
• e.g., for Nigiri to have ingredients other than rice & fish

• This behaviour is as “open world assumption”
• OWL makes OWA  

 
 

• For
• the answer to “Does Nigiri have beef as ingredient” is “Maybe/Don’t know”

• For
• the answer to “Does Nigiri have beef as ingredient” is “No”!

30

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some VinegaredRice,
 hasIngredient some Fish

DisjointClasses: VinegaredRice, Fish, Beef
Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some VinegaredRice,
 hasIngredient some Fish,
 hasIngredient only (Fish or VinegaredRice)

• In summary, the property closure pattern for a property P is of the form  

31

Class: A
 SubClassOf …
 P some B1, 
 …. ,  
 P some Bn,
 P only (B1 or … or Bn)

A first Axiom Pattern: the Property Closure Pattern

A second Axiom Pattern: the Covering Axiom Pattern

• Say we have Class X with subclasses Yi
• e.g., UG, MSc, MRes, PhD are all  

 subclasses of Student 

• Now we may want to say that  
“any individual of class X has to be an individual of some class Yi”
• i.e., class X is covered by classes Y1,…,Yk
• e.g., every Student is

• To ensure this coverage of X by Y1,…Yk, we use the covering axiom:

• Quick exercise: translate the above axioms into FOL! 32

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X
…
Class: Yk SubClassOf X

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X
…
Class: Yk SubClassOf X

Class: X SubClassOf: (Y1 or … or Yk)

More information on closing patterns….

• http://ontogenesis.knowledgeblog.org/1001
• Lots of short, accessible articles about ontology stuff

33

http://ontogenesis.knowledgeblog.org/1001

• Say we have Class X with subclasses Yi
• e.g., UG, MSc, MRes, PhD are all  

 subclasses of Student 

• Now we may want to say that  
“no individual can be an instance 2 or more of these class Yi”

• How do we “partition” values for properties such as Size, Spicyness, etc:
• E.g., we want to say that a person’s “Size”

• must be one of the subclasses of Size and
• only one of those sizes – and that
• an individual size cannot be two kinds of size at the same time

34

A third Axiom Pattern: the (Value) Partitions Pattern

35

Size

Small Medium Large

IsA
IsA

IsA
has_size

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size
DisjointClasses: Small, Medium, Large
Class: Size SubClassOf (Medium or Small or Large)

A third Axiom Pattern: the (Value) Partitions Pattern

+ Covering
Disjointness

Partition

36

Size

Small Medium Large

IsA
IsA

IsA

Human

has_sizeChild

hasSize

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size
DisjointClasses: Small, Medium, Large
Class: Size SubClassOf (Medium or Small or Large)
Property: hasSize Characteristics: Functional  
 Range: Size Domain: Mammal
Class: Human SubClassOf hasSize some Size
Class: Child SubClassOf Human and hasSize only Small

A fourth Axiom Pattern: the Entity Property Quality Pattern

• Used to model descriptive features of things
• possibly together with a value partition

• OWL elements:
– for each feature or quality such as size, weight, etc:

– functional property, e.g., has_size and
– class for its values, e.g., Size
– link these by stating that the class is the range of the property
– state to which classes these qualities apply

– via the domain of the property and
– where they are necessary

• Using classes allows to make subpartitions
• may overlap
• may be related to concrete sizes and datatype properties
• e.g. very large, moderately large

• Have a look at
• http://www.w3.org/TR/swbp-specified-values/
• http://ontogenesis.knowledgeblog.org/1499 37

A fourth Axiom Pattern: the Entity Property Quality
Pattern

http://ontogenesis.knowledgeblog.org/1499

Beyond Axiom Patterns:  
Composition, Parts and Wholes

38

Composition or Aggregation

• Describing a whole object by means of its parts
• treating complex things as a single object

• What are the primary composition relationships?
• What inferences can we make?
• What might we have in our representation 

languages to support this?

• Mereonomy is the study  
of parts, wholes, and their relations

39

http://www.flickr.com/photos/hartini/2429653007/

Parts & wholes: Some examples

• Bristles are part of a toothbrush
• Wheels are part of a shopping trolley
• A car is partly iron
• Milk is part of a cappuccino
• A meter is part of a kilometer
• Manchester is part of England
• A tree is part of a forest
• A slice of pie is part of the pie
• A book chapter is part of a book
• I am part of the University of Manchester

• These are different kinds of composition, with different characteristics and
properties.

• Confusing them may result in incorrect (or undesirable) inferences.

40

http://www.flickr.com/photos/aramisfirefly/4585596077

Properties of Composition

• [Winston, Chaffin, Herrmann1987] and [Odell 1998] identify core properties: 

• functional:
• Does the part bear a functional or structural relationship to the whole?
– e.g., engine-car, wheel-bicycle

• homeomerous:
• Is the part the same kind of thing as the whole?
– e.g., the North-West of England, a slice of bread

• invariant:
• Can the part be separated from the whole?
– e.g., a hair of me, the bell of my bicycle

– …next, we discuss natural combinations of these that give rise to interesting
part-whole relations

– …and don’t confuse P-W-Rs with is-a/SubClassOf:
– engine is part of car, but not ‘is-a’!

41

1. P-W-R: Component-Integral Object

• A configuration of parts within a whole

• Bristles - toothbrush
• Scene - film

• A particular arrangement (not just haphazard)

• If components cease to support the overall pattern then different
associations may arise
– Handle ripped from a door of the car.

• No longer a part but a piece

42

functional
non-homeomeric

separable

2. P-W-R: Material-Object

• Parts can’t be removed

• Capuccino is partly milk
• Bread is partly flour

• Define what objects are made of.
• Component-Integral can be separated

– Car without a door handle still a Car
• Material-Object can’t

– Bread without flour not bread

43

functional
non-homeomeric

non-separable

3. P-W-R: Portion-Object

• Almost like Material-Object, but parts are the same kinds of thing as whole

• Slice of bread is a portion of bread
• meter is part of a kilometer

• Selective inheritance of properties
• Ingredients of bread are ingredients of slice of bread

– But with different quantities

• Slice, helping, segment, lump, drop etc.

44

functional
homeomeric

separable

4. P-W-R: Place-Area

• Unlike Portion-Object, pieces cannot be removed

• Manchester part of England
• Peak part of a mountain

• Often between places and locations.
• Pieces similar in nature.

45

functional
homeomeric
non-separable

5. P-W-R: Member-Bunch

• No requirement for a particular structural or functional relationship

• Tree part of a Forest
• Employee part of the Union
• Ship part of a Fleet
• I am part of the University of Manchester

46

non-functional
non-homeomeric

separable

6. P-W-R: Member-Partnership

• An invariant form of Member-Bunch

• Stan Laurel is part of Laurel and Hardy
• Fred and Ginger are a dancing couple

• Removal of member destroys the partnership
– a different partnership may result

47

non-functional
non-homeomeric
non-separable

Summary of Odell’s Compositional Relationships

48

Functional Homeomeric Separable

Component-Integral Y N Y
Material-Object Y N N
Portion-Object Y Y Y
Place-Area Y Y N
Member-Bunch N N Y
Member-Partnership N N N

Dont’ confuse P-W-Rs with  
Non Compositional Relationships such as

• Topological inclusion
– I am in the lecture theatre

• Classification inclusion
– Catch 22 is a Book
– It’s an instance of Book, not a part of it, so not Member-Bunch

• Attribution
– Properties of an object can be confused with composition
– Height of a Lighthouse isn’t part of it

• Attachment
– Earrings aren’t part of Ears
– Toes are part of Feet
– Sometimes attachments are parts, but not always

• Ownership
– A bicycle has wheels
– I have a bicycle
– A lot of modelling is about making the right distinctions and thus helping to

get the right relationships between individuals 49

50

So what?
Modelling these in OWL

Transitivity

• We might expect part-whole or composition relationships to behave
transitively.
– But this is generally only true with the same kind of composition.

• Engine part of the Car
• Pistons part of the Engine
➡ Pistons part of the Car 
 
 

• Sean’s arm part of Sean
• Sean part of School of Computer Science
➡ Sean’s arm part of School of Computer Science

51

X is part of Y, Y is part of Z,  
thus X is part of Z

Transitivity

• We might expect part-whole or composition relationships to behave
transitively.
– But this is generally only true with the same kind of composition.

• Engine part of the Car
• Pistons part of the Engine
➡ Pistons part of the Car 
 
 

• Sean’s arm part of Sean
• Sean part of School of Computer Science
➡ Sean’s arm part of School of Computer Science

52

X is part of Y, Y is part of Z,  
thus X is part of Z

Property: isPartOf 
 Characteristics: Transitive
Property: isComponentOf 
 SubPropertyOf: isPartOf
Property: isPortionOf 
 SubPropertyOf: isPartOf 
 Characteristics: Transitive

Transitivity

• In partonomies, we may want to identify direct parts
– Piston directPartOf Engine; Engine directPartOf Car
– Piston is not directPartOf Car, but is a partOf Car

• I want to query for all the direct parts of the Car, but  
not the direct parts of its direct parts.
– So directPartOf shouldn’t be transitive

• Solution: provide a transitive superproperty

• Queries can use the superproperty to query transitive closure
• Assertions use the direct part of relationship
• A standard ontology design pattern, sometimes referred to as transitive

reduction.
53

Property: isPartOf
 Characteristics: Transitive

Property: isDirectPartOf
 SubPropertyOf: isPartOf

Aside: Transitivity and Subproperties

• Transitive property R is one s.t. for  
any I model of O, any x,y,z in ∆:
– if (x,y) ∈ RI and (y,z) ∈ RI,  

then (x,z) ∈ RI
– A superproperty of a transitive property  

 is not necessarily transitive
– A subproperty of a transitive property  

 is not necessarily transitive

54

Property: knows

Property: hasFriend

 SubPropertyOf: knows

 Characteristics: Transitive

Property: hasBestFriend

 SubPropertyOf: hasFriend

 Aside: A note on Inverses

• OWL allows us to define inverse relationships

• If P is the inverse of Q in O, then for  
any I model of O, any x,y in ∆: (x,y) ∈ PI iff (y,x) ∈ QI

• Be careful about what you can infer about inverse relationships: 
 
 
 
 

• …are all engines part of cars?
• does this ontology entail that  

 Engine SubClassOf (isPartOf some Car)?

55

Property: knows

Property: hasFriend

 SubPropertyOf: knows

 Characteristics: Transitive

Property: isFriendOf
 InverseOf: hasFriend

Property: hasPart
 InverseOf: isPartOf
Class: Car

 SubClassOf: Vehicle and  
 (hasPart some Engine) 
 (hasPart exactly 4 Wheel)

Composition

• Composition provides a mechanism for describing  
 a (class of) object(s) in terms of its parts  

• By considering basic properties of this part-whole relationship,  
we can identify different kinds of relationship

• The different relationships then help us in identifying when, for example, we
can (or can’t) apply transitivity.

• Explicitly separating these in our representation can avoid incorrect/invalid
inferences.

56

57

Today:
✓Semantic left-overs from last week
✓Deepen your semantics: OWL & FOL & …
✓Design Patterns in OWL

local ones
partonomies

• Design Principles in OWL:
• multi-dimensional modelling &
• post-coordination
• PIMPS - an upper level ontology

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

Ontology Normalisation

• An ontology covers different kinds of things
• each kind can come with its (class) hierarchy!

➡ poly-hierarchies are the norm
• “Harry Potter and the Philosopher’s stone” is a book, a

• children’s book (readers!),
• work of fiction (literature category!)
• written in English (language!)
• available in paperback (form of printing/binding)

• Poly-hierarchies allow knowledge to be captured and appropriately queried
• They are difficult to build by hand

• do we have “EnglishChildFictionPaperback” or  
 “EnglishChildPaperbackFiction” or….

• Essentially impossible to get right and maintain
• combinatorial explosion of terms!

• We can use OWL and automated reasoners to do the work for us
• … but how does one manage this and get it right? 58

Example: tangled medecine

59

shoulder_catches_during_movement
shoulder_feels_like_it_will_slip_out_of_place
shoulder_joint_feels_like_it_may_slip_out_of_place
shoulder_joint_pain_better_after_rest
shoulder_joint_pain_causes_difficulty_lying_on_affected_side
shoulder_joint_pain_causing_inability_to_sleep
shoulder_joint_pain_difficult_to_localize
shoulder_joint_pain_feels_better_after_normal_movement
shoulder_joint_pain_first_appears_at_night
shoulder_joint_pain_improved_by_medication
shoulder_joint_pain_improves_during_exercise__returns_later
shoulder_joint_pain_incr_by_raising_arm_above_shoulder_level
shoulder_joint_pain_increased_by
shoulder_joint_pain_increased_by_lifting
shoulder_joint_pain_increased_by_moving_arm_across_chest
shoulder_joint_pain_increased_by_reaching_around_the_back
shoulder_joint_pain_relieved_by_putting_arm_over_head
shoulder_joint_pain_sudden_onset
shoulder_joint_pain_unrelenting
shoulder_joint_pain_worse_on_rising
shoulder_joint_pain_worsens_with_extended_activity
shoulder_joint_popping_sound_heard
shoulder_joint_suddenly_gives_way
shoulder_seems_out_of_place
shoulder_seems_out_of_place__recollection_of_the_event
shoulder_seems_out_of_place_recurrent
shoulder_seems_out_of_place_which_resolved
shoulder_suddenly_locked_up

Example: “tangled” ontology of amino acids

60

There are several dimensions of classification here

• Identifiable dimensions are:
• amino acids themselves – they have side chains
• the size of the amino acids side chain
• the charge on the side chain
• the polarity of the side chain
• The hydrophobicity of the side chain

• We can normalise these into separate hierarchies then put them back
together again

• Our goal is to put entities into separate trees all formed on the same basis

61

Untangeling 1: separate dimensions Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate
• Glutamine
• Glycine
• Histidine

• Isoleucine
• Leucine

• Lysine
• Methionine
• Phenylalanine
• Proline

• Serine
• Threonine
• Tryptophan
• Tyrosine
• Valine

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

62

• Each separate dimension includes the same kind of thing
• Within a dimension, we don’t mix

• self-standing things, processes, modifiers (qualities)
• our classification by, for instance, structure and then charge

• We do that compositionally via defined classes and the automated
reasoners

63

Untangeling 1: separate dimensions

Class: AminoAcid 
 SubClassOf: hasSize some Size, 
 hasPolarity some Polar, 
 hasCharge some Charge, 
 hasHydrophobicity some  
 hydrophobicity
Class: Lysine
 SubClassOf: AminoAcid,
 hasSize some Large,
 hasCharge some Positive,
 hasPolarity some Polar,
 hasHydrophobicity some Hydrophilic

64

Untangeling 2: relate dimensions using properties

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate

Untangeling 3: Describe relevant terms

Class: LargeAminoAcid
 EquivalentTo: AminoAcid
 and hasSize some Large

Class: PositiveAminoAcid
 EquivalentTo: AminoAcid
 and hasCharge some Positive

Class: LargePositiveAminoAcid
 EquivalentTo: LargeAminoAcid and PositiveAminoAcid

65

• This poly-hierarchical/multi-dimensional modelling style in OWL  
allows us to use post-coordination
• build class expressions and use them like names
• i.e., we can ask a reasoner (via the OWL API)

• for instances of (AminoAcid and (hasSize some Large)  
 and (hasCharge some Positive))

• whether (AminoAcid and (hasSize some Large)  
 and (hasCharge some Neutral))  
is satisfiable w.r.t O

• relies on OWL reasoners/tools to be able to handle class expressions
in the same way as they handle class names 

• this saves us from having to give names to all combinations:
• we can give names to some expressions

• but we don’t have to
• since the reasoner can understand expressions!

Post-Coordination

66

Patterns used

• The Amino acids ontology uses these five patterns:
– Normalisation/Multidimensional modelling
– EPQ
– Closure (via it’s functional properties)
– A covering axiom for all the amino acids
– It’s own pattern for amino acids

– There is more information via
• http://ontogenesis.knowledgeblog.org/tag/ontology-normalization
– http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-

the-amino-acids-ontology/
– http://ontogenesis.knowledgeblog.org/1401

67

http://ontogenesis.knowledgeblog.org/tag/ontology-normalization
http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-the-amino-acids-ontology/
http://ontogenesis.knowledgeblog.org/1401

PIMPS - an Upper Level Ontologies

68

Upper Level Ontologies

• Domain neutral description of all entities
• Should be able to be used to describe any domain:

• biology, art, politics, business, medicine, …
• The basic dimensions:

• processes and the
• things that participate in processes

• Different ULOs differ in
• the ontology language they use
• their level of detail
• their view of the world
• etc

• Much philosophical discussion
• …been trying since 437 BCE and still not sorted it out

• So, we’ll do something simple: PIMPS

69

The PIMPS ontology in context

70

PIMPS: A Simple Domain Neutral Ontology

• Thing
– Process
– Immaterial
– Material
– Properties

• Quality
• Function
• Role
• Disposition

– Sites

71

• Process
• An entity that unfolds over time such that its identity changes
• Not all of a process is present at a given time-point in that process
• E.g., living, wedding, dying, eating, drinking, breathing, liberation,

election…
• Lots of “-ation” and “…ing” words

• Material
• Self-standing things I can “hold in my hand”
• E.g., ball, a car, a person, a leg, a pizza, a piece of seaweed, etc etc
• All of it exists at any one point in time
• All of Robert exists at any point in time, even though Robert himself

actually changes
• It retains its identity

72

PIMPS: A Simple Domain Neutral Ontology

• Immaterial
• Self-standing things I can not “hold in my hand”
• E.g., An idea, a goal, a wish, …
• It exists at any one point in time
• This idea may change over time but retains its identity

• Properties
• Dependant (not-self-standing) things including

• Quality, e.g. Size, Weight
• Function, e.g., Control, Activation, Neutralisation
• Role, e.g., Catalyst, Pathogen
• Disposition, e.g., HeatResistence

• Site
• point or area on a material entity
• not to be confused with segments of that entity

73

PIMPS: A Simple Domain Neutral Ontology

Why use an upper level ontology?

• Consistent modelling style both within and between ontologies
• Primarily a guide to using properties consistently
• Continuants have parts that are continuants
• Processes have parts that are processes
• Independent continuants hasQuality some Quality and playRole some Role
• Independent continuant hasFunction some Function
• Independent continuants participate in processes
• Sites occupy some material entity
• Use property hierarchies…

74

75

Today:
✓Semantic left-overs from last week
✓Deepen your semantics: OWL & FOL & …
✓Design Patterns in OWL

local ones
partonomies

Design Principles in OWL:
multi-dimensional modelling &
post-coordination

✓PIMPS - an upper level ontology
• Automated reasoning about OWL ontologies:

• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

