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A reminder: quotations and citations

• Citations [4] inform us where you got an  
idea/approach/result/technique/term…from 

• Reference its source when you take an idea/result/example/… 

• Quote marks “…” inform us where you got a phrase/sentence/paragraph 
from 

• Quote when you take a sentence & reference its source! 
…even if it’s only 1 sentence or a short poem on your mom’s birthday 
card!
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So far, we have looked at 
• operational knowledge of OWL (FHKB) 
• KR in general, its roles 
• KA and competency questions  
• formalising knowledge 
• the semantics of OWL
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Today:  
• Semantic left-overs from last week 
• Deepen your semantics: OWL & FOL & … 
• Design Patterns in OWL 

• local ones 
• partonomies 

• Design Principles in OWL:  
• multi-dimensional modelling &  
• post-coordination 
• PIMPS - an upper level ontology 

• Automated reasoning about OWL ontologies:  
• a tableau-based algorithm to make  
• …implicit knowledge explicit 
• …our know KR actionable



Left-overs from last week 
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OWL 2 Semantics: an interpretation satisfying … (2)

• An interpretation I satisfies an axiom α if 
• α = C SubClassOf: D  and CI ⊆ DI  

• α = C EquivalentTo: D  and CI = DI 
• α = P SubPropertyOf: S  and PI ⊆ SI 

• α = P EquivalentTo: S  and PI = SI 
• … 
• α = x Type: C  and xI ∈ CI 
• α = x R y  and (xI ,yI) ∈ RI 

• I satisfies an ontology O if I satisfies every axiom A in O 
• If I satisfies O, we call I a model of O 

• See how the axioms in O constrain interpretations:  
✓ the more axioms you add to O, the fewer models O has 

• …they do/don’t hold/are(n’t) satisfied in an ontology 
• in contrast, a class expression C describes a set CI in I

Check  
OWL 2 Direct Semantics  
for more!!!

From Last W
eek
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Draw & Match Models to Ontologies!
O1 = {} I1: 

Δ  = {v, w, x, y, z} 
 
CI = {v, w, y} 
DI = {x, y}   EI = {}  

RI = {(v, w), (v, y)} 
SI = {} 
 
aI = v     bI = x 
cI = w     dI = y

O2 = {a:C, b:D, c:C, d:C}

O3 = {a:C, b:D, c:C, b:C, d:E}

O4 = {a:C, b:D, c:C, b:C, d:E 
           D SubClassOf C}

O5 = {a:C, b:D, c:C, b:C, d:E 
          a R d,   

     D SubClassOf C,  
D SubClassOf  

S some C}

O6 = {a:C, b:D, c:C, b:C, d:E 
           a R d,   

     D SubClassOf C,  
D SubClassOf  

S some C, 
C SubClassOf R only C }

I2: 
Δ  = {v, w, x, y, z} 
 
CI = {v, w, y} 
DI = {x, y}   EI = {y}  

RI = {(v, w), (v, y)} 
SI = {} 
 
aI = v     bI = x 
cI = w     dI = y

I3: 
Δ  = {v, w, x, y, z} 
 
CI = {x, v, w, y} 
DI = {x, y}   EI = {y}  

RI = {(v, w), (v, y)} 
SI = {} 
 
aI = v     bI = x 
cI = w     dI = y

I4: 
Δ  = {v, w, x, y, z} 
 
CI = {x, v, w, y} 
DI = {x, y}   EI = {y}  

RI = {(v, w), (v, y)} 
SI = {(x,x), (y,x)} 
 
aI = v     bI = x 
cI = w     dI = y

From Last Week
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O 

Theorem: 
1. O is consistent iff O ⊧ Thing SubClassOf Nothing 
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O) 
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent 
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent 

OWL 2 Semantics: Entailments etc. (3)
From Last Week
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O 

• O is coherent if every class name that occurs in O is satisfiable w.r.t O 
• Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
2. checking, for each pair A,B of class names in O plus Thing, Nothing  

O ⊧ A SubClassOf B 
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A 

…and returning the result in a suitable form: O’s inferred class hierarchy

OWL 2 Semantics: Entailments etc. (3) ctd
From Last Week



10

A side note: Necessary and Sufficient Conditions

• Classes can be described in terms of necessary and sufficient conditions. 
– This differs from some frame-based languages where we only have 

necessary conditions. 
• Necessary conditions 

– SubClassOf axioms 
– C SubClassOf: D…any instance of C is also an instance of D 

• Necessary & Sufficient conditions 
– EquivalentTo axioms 
– C EquivalentTo: D…any instance of C is also an instance of D 

       and vice versa, any instance of D is also an instance of C 
• Allows us to perform automated recognition of individuals,  

i.e. O ⊧ b:C 

Constraints/Background knowledge

Definitions



OWL and Other Formalisms:  
First Order Logic 

Object-Oriented Formalisms 

11
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OWL and First Order Logic

• in COMP60332, you have learned a lot about FOL 
• most of OWL 2 (and OWL 1) is a decidable fragment of FOL: 

• …we assume that we have replaced each axiom C EquivalentTo D in O with  
C SubClassOf D, D SubClassOf C 

• …what is             ?

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester
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Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8
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OWL and First Order Logic

Exercise:  
1. Fill in the blanks 
2.Why is tx(C) a formula in 1 free variable?  
3. translate O6 to FOL 
4.…what do you know about the  

2 variable fragment of FOL?

O6 = {a:C, b:D, c:C, b:C, d:E 
           a R d,   

     D SubClassOf C,  
D SubClassOf  

S some C, 
C SubClassOf R only C }

Relationship with First Order Logic II

Here is the translation tx() from an OWL ontology into FOL formulae in one free variable

tx(A) = A(x), ty(A) = A(y),

tx(not C) = ¬tx(C), ty(not C) = . . . ,

tx(C and D) = tx(C) ∧ tx(D), ty(C and D) = . . . ,

tx(C or D) = . . . , ty(C or D) = . . . ,

tx(r some C) = ∃y.r(x, y) ∧ ty(C), ty(r some C) = . . . ,

tx(r only C) = . . . , ty(r only C) = . . . .

• Fill in the blanks

•Why is tx(C) a formula in one free variable?

University of
Manchester

7
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Object Oriented Formalisms

Many formalisms use an “object oriented model” with 

• Objects/Instances/Individuals 
• Elements of the domain of discourse 
• e.g., “Bob”   
• Possibly allowing descriptions of classes 

• Types/Classes/Concepts 
• to describe sets of objects sharing certain characteristics 
• e.g., “Person”  

• Relations/Properties/Roles 
• Sets of pairs (tuples) of objects 
• e.g., “likes”  

• Such languages are/can be: 
• Well understood 
• Well specified 
• (Relatively) easy to use 
• Amenable to machine processing
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Object Oriented Formalisms

OWL can be said to be object-oriented: 

• Objects/Instances/Individuals 
• Elements of the domain of discourse 
• e.g., “Bob”   
• Possibly allowing descriptions of classes 

• Types/Classes/Concepts 
• to describe sets of objects sharing certain characteristics 
• e.g., “Person”  

• Relations/Properties/Roles 
• Sets of pairs (tuples) of objects 
• e.g., “likes”  

• Axioms represent background knowledge, constraints, definitions, … 
• Careful: SubClassOf is similar to inheritance but different:  

• inheritance can usually be over-ridden 
• SubClassOf can’t 
• in OWL, ‘multiple inheritance’ is normal
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Other KR systems 

• Protégé can be said to provide a frame-based view of an OWL ontology: 
• it gathers axiom by the class/property names on their left 

• DBs, frame-based or other KR systems may make assumptions:  
1. Unique name assumption 

▪ Different names are always interpreted as different elements 
2. Closed domain assumption 

▪ Domain consists only of elements named in the DB/KB 
3.  Minimal models 

▪ Extensions are as small as possible 
4. Closed world assumption 

▪ What isn’t entailed by O isn’t true 
5. Open world assumption: an axiom can be such that  

▪ it’s entailed by O or  
▪ it’s negation is entailed by O or 
▪ none of the above 

Question: which of these does 
▪ OWL make? 
▪ a SQL DB make? 
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Other KR systems: Single Model -v- Multiple Model

Multiple models: 
• Expressively powerful 
• Boolean connectives, 

including not, or 
• Can capture incomplete 

information 
• E.g., using or, some 

• Monotonic: adding information 
preserves entailments 

• Reasoning (e.g., querying) is 
often complex: e.g.,reasoning by 
case  

• Queries may give counter-
intuitive results in some cases

Single model: 
• Expressively weaker (in most 

respects) 
– No negation or disjunction 
• Can’t capture incomplete 

information 
• Often non-monotonic: adding 

information may invalidate 
entailments 

• Reasoning (e.g., querying) is 
often easy 

• Queries may give counter-
intuitive results in some cases
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Complete details about OWL

• here, we have concentrated on some core features of OWL, e.g., no  
• domain, range axioms 
• SubPropertyOf, InverseOf 
• datatype properties  
• … 

• we expect you to look these up!  

• OWL is defined via a Structural Specification 
• http://www.w3.org/TR/owl2-syntax/ 
• Defines language independently of concrete syntaxes 
• Conceptual structure and abstract syntax 
• UML diagrams and functional-style syntax used to define the language 
• Mappings to concrete syntaxes then given.  

• The structural specification provides the foundation for implementations (e.g. 
OWL API as discussed later)



19

OWL Resources

• The OWL Technical Documentation is all available online from the W3C site. 
 
http://www.w3.org/TR/owl2-overview/ 
 
All the OWL documents are relevant; we recommend in particular the  
• Overview 
• Primer 
• Reference Guide and  
• Manchester Syntax Guide  

• Our Ontogenesis Blog at 
• http://www.sciencedirect.com/science/article/pii/S1570826808000413  

http://www.w3.org/TR/owl2-overview/
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Today:  
✓Semantic left-overs from last week 
✓Deepen your semantics: OWL & FOL & … 
• Design Patterns in OWL 

• local ones 
• partonomies 

• Design Principles in OWL:  
• multi-dimensional modelling &  
• post-coordination 
• PIMPS - an upper level ontology 

• Automated reasoning about OWL ontologies:  
• a tableau-based algorithm to make  
• …implicit knowledge explicit 
• …our know KR actionable



Patterns of axioms

• An axiom pattern is  
• a recurring regularity in how axioms are used or appear  

within an ontology 

• The most common is  
• atomic SubClassOf axioms,  

i.e. SubClassOf axioms with class names on both sides 
• … but they get much more complex than that 

• Usually, we’re referring to syntactic patterns: 
• how axioms are written,  
• but remember “axioms” are inferred as well as written

21



Patterns and design patterns

• Software Design Patterns are  
• well accepted solutions for common issues met in software construction 

• Ontology Design Patterns ODPs are the same: 
• well accepted solutions for common issues met in ontology construction 
• but ontology engineers have barely agreed on well accepted problems, 

let alone their solutions 

• ODPs often depend on one’s philosophical stance … 
we’ll mostly talk about patterns as recurring regularities of asserted axioms

22



Coding style: term normalisation

• Is a sort of pattern… 
• What we want is: 

‣ Class names:  
‣ singular nouns with  
‣ initial capital letter,  
‣ spaces via CamelCase 

‣ Individual names:  
‣ all lower case,  
‣ spaces indicated by _ 

‣ Property names:  
‣ initial lower case letter,  
‣ spaces via CamelCase  
‣ usually start with “is” or “has” 

• All classes and individuals have a  
label, creator, description  
annotation property

23



Term normalisation ⊆ applied naming convention

• A naming convention determines  
• what words to use, in  
• which order and  
• what one does about symbols and acronyms 

• Adopt one 
• for both labels and URI fragments 
• both for the URI fragment and for the label 

• Having a label is a “good practice” 
 
 
 
 
                                                                                               

24

“Glucose transport” vs  
“transport of glucose”

See http://ontogenesis.knowledgeblog.org/948 for an introduction  

http://ontogenesis.knowledgeblog.org/948


How good names help modelling

• The help understanding relationships between terms: for example, 
• Thigh, shin, foot and toe are not “leg”, but “leg part” 
• Slice of tomato, tomato sauce, and tomato puree are not “Tomato” but 

“Tomato based product” 
• Eggs, milk, honey are not meat or animal, but “Animal Product” 
• Vinegared Rice is not Sushi, but “part of Sushi” of “Sushi Ingredient” 

• Card sorting and the three card trick can help you here 
• More on this later when we talk about upper level ontologies

25



Types of axiom patterns

• Domain modelling patterns: How to organise the axioms describing a 
domain 

• Works both in the  
• large: the whole ontology – and in the  
• small: how to describe a class/type of sushi  

• Language patterns: Used to  
• take advantage of language features or  
• work around something missing in a language 

• The latter are used in the former

26



A first Axiom Pattern: the Property Closure Pattern

Class: Nigiri 
 SubClassOf Sushi, 
  hasIngredient some VinegaredRice, 
  hasIngredient some Fish 

• Does Nigiri contain rice? 
• Does Nigiri contain fish? 
• Does Nigiri contain beef?

27
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Fish

Beef

VinegaredRice

Nigiri

I1

Class: Nigiri 
 SubClassOf Sushi, 
  hasIngredient some VinegaredRice, 
  hasIngredient some Fish

A first Axiom Pattern: the Property Closure Pattern

Fish

Beef

VinegaredRice

Nigiri

I2

hasIngredient

Which of these interpretations  
is a model of the above axiom?
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Fish

Beef

VinegaredRice

Nigiri

I1

Class: Nigiri 
 SubClassOf Sushi, 
  hasIngredient some VinegaredRice, 
  hasIngredient some Fish,  
  hasIngredient only (Fish or VinegaredRice)    

A first Axiom Pattern: the Property Closure Pattern

Fish

Beef

VinegaredRice

Nigiri

I2

hasIngredient

Use property closure pattern  
to avoid unintended models! 



OWL’s Open World Assumption (OWA) 

• Unless we have ‘constrained’ something it may be possible 
• e.g., for Nigiri to have ingredients other than rice & fish 

• This behaviour is as “open world assumption” 
• OWL makes OWA  

 
 

• For  
• the answer to “Does Nigiri have beef as ingredient” is “Maybe/Don’t know” 

• For  
• the answer to “Does Nigiri have beef as ingredient” is “No”!

30

Class: Nigiri 
 SubClassOf Sushi, 
  hasIngredient some VinegaredRice, 
  hasIngredient some Fish

DisjointClasses: VinegaredRice, Fish, Beef 
Class: Nigiri 
 SubClassOf Sushi, 
  hasIngredient some VinegaredRice, 
  hasIngredient some Fish,  
  hasIngredient only (Fish or VinegaredRice)    



• In summary, the property closure pattern for a property P is of the form  

31

Class: A 
 SubClassOf … 
  P some B1, 
                                           ….  ,  
  P some Bn,  
  P only (B1 or … or Bn)    

A first Axiom Pattern: the Property Closure Pattern



A second Axiom Pattern: the Covering Axiom Pattern

• Say we have Class X with subclasses Yi 
• e.g., UG, MSc, MRes, PhD are all  

            subclasses of Student 

• Now we may want to say that  
“any individual of class X has to be an individual of some class Yi”  
• i.e., class X is covered by classes Y1,…,Yk 
• e.g., every Student is 

• To ensure this coverage of X by Y1,…Yk, we use the covering axiom:   

• Quick exercise: translate the above axioms into FOL! 32

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X 
… 
Class: Yk SubClassOf X

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X 
… 
Class: Yk SubClassOf X 

Class: X SubClassOf: (Y1 or … or Yk)



More information on closing patterns….

• http://ontogenesis.knowledgeblog.org/1001 
• Lots of short, accessible articles about ontology stuff

33

http://ontogenesis.knowledgeblog.org/1001


• Say we have Class X with subclasses Yi 
• e.g., UG, MSc, MRes, PhD are all  

            subclasses of Student 

• Now we may want to say that  
“no individual can be an instance 2 or more of these class Yi”  

• How do we “partition” values for properties such as Size, Spicyness, etc:  
• E.g., we want to say that a person’s “Size”  

• must be one of the subclasses of Size and  
• only one of those sizes – and that  
• an individual size cannot be two kinds of size at the same time

34

A third Axiom Pattern: the (Value) Partitions Pattern
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Size

Small Medium Large

IsA
IsA

IsA
has_size

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size 
DisjointClasses: Small, Medium, Large 
Class: Size SubClassOf (Medium or Small or Large)

A third Axiom Pattern: the (Value) Partitions Pattern

+ Covering
Disjointness

Partition
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Size

Small Medium Large

IsA
IsA

IsA

Human

has_sizeChild

hasSize

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size 
DisjointClasses: Small, Medium, Large 
Class: Size SubClassOf (Medium or Small or Large) 
Property: hasSize Characteristics: Functional  
          Range: Size Domain: Mammal 
Class: Human SubClassOf hasSize some Size 
Class: Child SubClassOf Human and hasSize only Small

A fourth Axiom Pattern: the Entity Property Quality Pattern



• Used to model descriptive features of things 
• possibly together with a value partition 

• OWL elements:  
– for each feature or quality such as size, weight, etc:  

– functional property, e.g., has_size and  
– class for its values, e.g., Size  
– link these by stating that the class is the range of the property 
– state to which classes these qualities apply  

– via the domain of the property and 
– where they are necessary  

• Using classes allows to make subpartitions 
• may overlap 
• may be related to concrete sizes and datatype properties 
• e.g. very large, moderately large 

• Have a look at  
• http://www.w3.org/TR/swbp-specified-values/ 
• http://ontogenesis.knowledgeblog.org/1499 37

A fourth Axiom Pattern: the Entity Property Quality 
Pattern

http://ontogenesis.knowledgeblog.org/1499


Beyond Axiom Patterns:  
Composition, Parts and Wholes

38



Composition or Aggregation

• Describing a whole object  by means of its parts 
• treating complex things as a single object 

• What are the primary composition relationships? 
• What inferences can we make? 
• What might we have in our representation 

languages to support this? 

• Mereonomy is the study  
of parts, wholes, and their relations

39

http://www.flickr.com/photos/hartini/2429653007/



Parts & wholes: Some examples

• Bristles are part of a toothbrush 
• Wheels are part of a shopping trolley 
• A car is partly iron 
• Milk is part of a  cappuccino  
• A meter is part of a kilometer 
• Manchester is part of England 
• A tree is part of a forest 
• A slice of pie is part of the pie 
• A book chapter is part of a book 
• I am part of the University of Manchester  

• These are different kinds of composition, with different characteristics and 
properties.  

• Confusing them may result in incorrect (or undesirable) inferences.

40

http://www.flickr.com/photos/aramisfirefly/4585596077



Properties of Composition

• [Winston, Chaffin, Herrmann1987] and [Odell 1998] identify core properties: 

• functional:  
• Does the part bear a functional or structural relationship to the whole? 
– e.g., engine-car, wheel-bicycle 

• homeomerous:  
• Is the part the same kind of thing as the whole? 
– e.g., the North-West of England, a slice of bread 

• invariant: 
• Can the part be separated from the whole? 
– e.g., a hair of me, the bell of my bicycle 

– …next, we discuss natural combinations of these that give rise to interesting 
part-whole relations 

– …and don’t confuse P-W-Rs with is-a/SubClassOf:  
– engine is part of car, but not ‘is-a’!

41



1. P-W-R: Component-Integral Object

• A configuration of parts within a whole 

• Bristles - toothbrush 
• Scene - film 

• A particular arrangement (not just haphazard) 

• If components cease to support the overall pattern then different 
associations may arise 
– Handle ripped from a door of the car. 

• No longer a part but a piece

42

functional  
non-homeomeric 

separable



2. P-W-R: Material-Object

• Parts can’t be removed 

• Capuccino is partly milk 
• Bread is partly flour 

• Define what objects are made of. 
• Component-Integral can be separated 

– Car without a door handle still a Car 
• Material-Object can’t 

– Bread without flour not bread

43

functional 
non-homeomeric 

non-separable



3. P-W-R: Portion-Object

• Almost like Material-Object, but parts are the same kinds of thing as whole 

• Slice of bread is a portion of bread 
• meter is part of a kilometer 

• Selective inheritance of properties 
• Ingredients of bread are ingredients of slice of bread 

– But with different quantities 

• Slice, helping, segment, lump, drop etc.

44

functional 
homeomeric 

separable



4. P-W-R: Place-Area

• Unlike Portion-Object, pieces cannot be removed 

• Manchester part of England 
• Peak part of a mountain 

• Often between places and locations. 
• Pieces similar in nature.

45

functional 
homeomeric 
non-separable



5. P-W-R: Member-Bunch

• No requirement for a particular structural or functional relationship 

• Tree part of a Forest 
• Employee part of the Union 
• Ship part of a Fleet 
• I am part of the University of Manchester

46

non-functional 
non-homeomeric 

separable



6. P-W-R: Member-Partnership

• An invariant form of Member-Bunch 

• Stan Laurel is part of Laurel and Hardy 
• Fred and Ginger are a dancing couple 

• Removal of member destroys the partnership 
– a different partnership may result

47

non-functional 
non-homeomeric 
non-separable



Summary of Odell’s Compositional Relationships

48

Functional Homeomeric Separable

Component-Integral Y N Y
Material-Object Y N N
Portion-Object Y Y Y
Place-Area Y Y N
Member-Bunch N N Y
Member-Partnership N N N



Dont’ confuse P-W-Rs with  
Non Compositional Relationships such as

• Topological inclusion 
– I am in the lecture theatre 

• Classification inclusion 
– Catch 22 is a Book  
– It’s an instance of Book, not a part of it, so not Member-Bunch 

• Attribution 
– Properties of an object can be confused with composition 
– Height of a Lighthouse isn’t part of it 

• Attachment 
– Earrings aren’t part of Ears 
– Toes are part of Feet 
– Sometimes attachments are parts, but not always 

• Ownership 
– A bicycle has wheels 
– I have a bicycle 
– A lot of modelling is about making the right distinctions and thus helping to 

get the right relationships between individuals 49
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So what? 
Modelling these in OWL



Transitivity

• We might expect part-whole or composition relationships to behave 
transitively.  
– But this is generally only true with the same kind of composition. 

• Engine part of the Car 
• Pistons part of the Engine 
➡ Pistons part of the Car 
 
 

• Sean’s arm part of Sean 
• Sean part of School of Computer Science 
➡ Sean’s arm part of School of Computer Science
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X is part of Y, Y is part of Z,  
thus X is part of Z



Transitivity

• We might expect part-whole or composition relationships to behave 
transitively.  
– But this is generally only true with the same kind of composition. 

• Engine part of the Car 
• Pistons part of the Engine 
➡ Pistons part of the Car 
 
 

• Sean’s arm part of Sean 
• Sean part of School of Computer Science 
➡ Sean’s arm part of School of Computer Science
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X is part of Y, Y is part of Z,  
thus X is part of Z

Property: isPartOf 
           Characteristics: Transitive 
Property: isComponentOf 
          SubPropertyOf: isPartOf 
Property: isPortionOf 
          SubPropertyOf: isPartOf 
          Characteristics: Transitive



Transitivity

• In partonomies, we may want to identify direct parts 
– Piston directPartOf Engine; Engine directPartOf Car 
– Piston is not directPartOf Car, but is a partOf Car 

• I want to query for all the direct parts of the Car, but  
not the direct parts of its direct parts.  
– So directPartOf shouldn’t be transitive 

• Solution: provide a transitive superproperty 

• Queries can use the superproperty to query transitive closure 
• Assertions use the direct part of relationship 
• A standard ontology design pattern, sometimes referred to as transitive 

reduction.
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Property: isPartOf 
  Characteristics: Transitive 

Property: isDirectPartOf 
  SubPropertyOf: isPartOf



Aside: Transitivity and Subproperties

• Transitive property R is one s.t. for  
any I model of O, any x,y,z in ∆:  
– if (x,y) ∈ RI and (y,z) ∈ RI,  

then (x,z) ∈ RI 
– A superproperty of a transitive property  

 is not necessarily transitive 
– A subproperty of a transitive property  

 is not necessarily transitive
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Property: knows 

Property: hasFriend 

  SubPropertyOf: knows 

  Characteristics: Transitive 

Property: hasBestFriend 

  SubPropertyOf: hasFriend



 Aside: A note on Inverses

• OWL allows us to define inverse relationships 

• If P is the inverse of Q in O, then for  
any I model of O, any x,y in ∆: (x,y) ∈ PI iff (y,x) ∈ QI 

• Be careful about what you can infer about inverse relationships: 
 
 
 
 

• …are all engines part of cars?  
• does this ontology entail that  

      Engine SubClassOf (isPartOf some Car)? 
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Property: knows 

Property: hasFriend 

  SubPropertyOf: knows 

  Characteristics: Transitive 

Property: isFriendOf  
  InverseOf: hasFriend

Property: hasPart  
     InverseOf: isPartOf 
Class: Car  

 SubClassOf: Vehicle and  
                       (hasPart some Engine) 
                       (hasPart exactly 4 Wheel)



Composition

• Composition provides a mechanism for describing  
       a (class of) object(s) in terms of its parts  

• By considering basic properties of this part-whole relationship,  
we can identify different kinds of relationship 

• The different relationships then help us in identifying when, for example, we 
can (or can’t) apply transitivity.  

• Explicitly separating these in our representation can avoid incorrect/invalid 
inferences. 
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Today:  
✓Semantic left-overs from last week 
✓Deepen your semantics: OWL & FOL & … 
✓Design Patterns in OWL 

local ones 
partonomies 

• Design Principles in OWL:  
• multi-dimensional modelling &  
• post-coordination 
• PIMPS - an upper level ontology 

• Automated reasoning about OWL ontologies:  
• a tableau-based algorithm to make  
• …implicit knowledge explicit 
• …our know KR actionable



Ontology Normalisation

• An ontology covers different kinds of things 
• each kind can come with its (class) hierarchy!  

➡ poly-hierarchies are the norm 
• “Harry Potter and the Philosopher’s stone” is a book, a  

• children’s book (readers!),  
• work of fiction (literature category!)  
• written in English (language!) 
• available in paperback (form of printing/binding) 

• Poly-hierarchies allow knowledge to be captured and appropriately queried 
• They are difficult to build by hand 

• do we have “EnglishChildFictionPaperback” or  
                    “EnglishChildPaperbackFiction” or….       

• Essentially impossible to get right and maintain 
• combinatorial explosion of terms!   

• We can use OWL and automated reasoners to do the work for us   
• … but how does one manage this and get it right? 58



Example: tangled medecine
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shoulder_catches_during_movement
shoulder_feels_like_it_will_slip_out_of_place
shoulder_joint_feels_like_it_may_slip_out_of_place
shoulder_joint_pain_better_after_rest
shoulder_joint_pain_causes_difficulty_lying_on_affected_side
shoulder_joint_pain_causing_inability_to_sleep
shoulder_joint_pain_difficult_to_localize
shoulder_joint_pain_feels_better_after_normal_movement
shoulder_joint_pain_first_appears_at_night
shoulder_joint_pain_improved_by_medication
shoulder_joint_pain_improves_during_exercise__returns_later
shoulder_joint_pain_incr_by_raising_arm_above_shoulder_level
shoulder_joint_pain_increased_by
shoulder_joint_pain_increased_by_lifting
shoulder_joint_pain_increased_by_moving_arm_across_chest
shoulder_joint_pain_increased_by_reaching_around_the_back
shoulder_joint_pain_relieved_by_putting_arm_over_head
shoulder_joint_pain_sudden_onset
shoulder_joint_pain_unrelenting
shoulder_joint_pain_worse_on_rising
shoulder_joint_pain_worsens_with_extended_activity
shoulder_joint_popping_sound_heard
shoulder_joint_suddenly_gives_way
shoulder_seems_out_of_place
shoulder_seems_out_of_place__recollection_of_the_event
shoulder_seems_out_of_place_recurrent
shoulder_seems_out_of_place_which_resolved
shoulder_suddenly_locked_up



Example: “tangled” ontology of amino acids
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There are several dimensions of classification here

• Identifiable dimensions are:  
• amino acids themselves – they have side chains  
• the size of the amino acids side chain 
• the charge on the side chain 
• the polarity of the side chain 
• The hydrophobicity of the side chain 

• We can normalise these into separate hierarchies then put them back 
together again  

• Our goal is to put entities into separate trees all formed on the same basis 
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Untangeling 1: separate dimensions Amino Acids 
• Alanine 
• Arginine 
• Asparagine 
• Cysteine 
• Glutamate 
• Glutamine 
• Glycine 
• Histidine 

• Isoleucine 
• Leucine 

• Lysine 
• Methionine 
• Phenylalanine 
• Proline 

• Serine 
• Threonine 
• Tryptophan 
• Tyrosine 
• Valine

Charge 
• Negative 
• Neutral 
• Positive

Size 
• Tiny 
• Small 
• Medium 
• Large

Polarity 
• Polar 
• Nonpolar

Hydrophobicity 
• Hydrophobic 
• Hydrophilic
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• Each separate dimension includes the same kind of thing 
• Within a dimension, we don’t mix  

• self-standing things, processes, modifiers (qualities) 
• our classification by, for instance, structure and then charge 

• We do that compositionally via defined classes and the automated 
reasoners 
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Untangeling 1: separate dimensions



Class: AminoAcid 
       SubClassOf: hasSize some Size, 
                             hasPolarity some Polar, 
                             hasCharge some Charge, 
                             hasHydrophobicity some  
                                             hydrophobicity 
Class: Lysine 
 SubClassOf: AminoAcid, 
  hasSize some Large, 
  hasCharge some Positive, 
  hasPolarity some Polar, 
  hasHydrophobicity some Hydrophilic
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Untangeling 2: relate dimensions using properties

Charge 
• Negative 
• Neutral 
• Positive

Size 
• Tiny 
• Small 
• Medium 
• Large

Polarity 
• Polar 
• Nonpolar

Hydrophobicity 
• Hydrophobic 
• Hydrophilic

Amino Acids 
• Alanine 
• Arginine 
• Asparagine 
• Cysteine 
• Glutamate



Untangeling 3: Describe relevant terms

Class: LargeAminoAcid 
 EquivalentTo: AminoAcid 
  and hasSize some Large 

Class: PositiveAminoAcid 
  EquivalentTo: AminoAcid 
  and hasCharge some Positive 

Class: LargePositiveAminoAcid 
 EquivalentTo: LargeAminoAcid and PositiveAminoAcid
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• This poly-hierarchical/multi-dimensional modelling style in OWL  
allows us to use post-coordination 
• build class expressions and use them like names 
• i.e., we can ask a reasoner (via the OWL API)  

• for instances of (AminoAcid and (hasSize some Large)  
                                        and (hasCharge some Positive)) 

• whether (AminoAcid and (hasSize some Large)  
                                 and (hasCharge some Neutral))  
is satisfiable w.r.t O 

• relies on OWL reasoners/tools to be able to handle class expressions 
in the same way as they handle class names 

• this saves us from having to give names to all combinations: 
• we can give names to some expressions 

• but we don’t have to  
• since the reasoner can understand expressions!

Post-Coordination
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Patterns used

• The Amino acids ontology uses these five patterns: 
– Normalisation/Multidimensional modelling 
– EPQ 
– Closure (via it’s functional properties) 
– A covering axiom for all the amino acids 
– It’s own pattern for amino acids 

– There is more information via 
• http://ontogenesis.knowledgeblog.org/tag/ontology-normalization 
– http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-

the-amino-acids-ontology/ 
– http://ontogenesis.knowledgeblog.org/1401
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http://ontogenesis.knowledgeblog.org/tag/ontology-normalization
http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-the-amino-acids-ontology/
http://ontogenesis.knowledgeblog.org/1401


PIMPS - an Upper Level Ontologies
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Upper Level Ontologies

• Domain neutral description of all entities 
• Should be able to be used to describe any domain:  

• biology, art, politics, business, medicine, … 
• The basic dimensions:  

• processes and the  
• things that participate in processes  

• Different ULOs differ in  
• the ontology language they use 
• their level of detail 
• their view of the world 
• etc 

• Much philosophical discussion 
• …been trying since 437 BCE and still not sorted it out 

• So, we’ll do something  simple: PIMPS
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The PIMPS ontology in context
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PIMPS: A Simple Domain Neutral Ontology

• Thing 
– Process 
– Immaterial 
– Material 
– Properties 

• Quality 
• Function 
• Role 
• Disposition 

– Sites
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• Process 
• An entity that unfolds over time such that its identity changes 
• Not all of a process is present at a given time-point in that process 
• E.g., living, wedding, dying, eating, drinking, breathing, liberation, 

election… 
• Lots of “-ation” and “…ing” words  

• Material  
• Self-standing things I can “hold in my hand” 
• E.g.,  ball, a car,  a person, a leg, a pizza, a piece of seaweed, etc etc 
• All of it exists at any one point in time 
• All of Robert exists at any point in time, even though Robert himself 

actually changes 
• It retains its identity
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PIMPS: A Simple Domain Neutral Ontology



• Immaterial  
• Self-standing things I can not “hold in my hand” 
• E.g., An idea, a goal, a wish, … 
• It exists at any one point in time 
• This idea may change over time but retains its identity 

• Properties 
• Dependant (not-self-standing) things including  

• Quality, e.g. Size, Weight 
• Function, e.g., Control, Activation, Neutralisation 
• Role, e.g., Catalyst, Pathogen 
• Disposition, e.g.,  HeatResistence 

• Site 
• point or area on a material entity 
• not to be confused with segments of that entity
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PIMPS: A Simple Domain Neutral Ontology



Why use an upper level ontology?

• Consistent modelling style both within and between ontologies 
• Primarily a guide to using properties consistently 
• Continuants have parts that are continuants 
• Processes have parts that are processes 
• Independent continuants hasQuality some Quality and playRole some Role 
• Independent continuant hasFunction some Function 
• Independent continuants participate in processes 
• Sites occupy some material entity 
• Use property hierarchies…

74



75

Today:  
✓Semantic left-overs from last week 
✓Deepen your semantics: OWL & FOL & … 
✓Design Patterns in OWL 

local ones 
partonomies 

Design Principles in OWL:  
multi-dimensional modelling &  
post-coordination 

✓PIMPS - an upper level ontology 
• Automated reasoning about OWL ontologies:  

• a tableau-based algorithm to make  
• …implicit knowledge explicit 
• …our know KR actionable


