Knowledge Acquisition

COMP62342
Sean Bechhofer
University of Manchester
sean.bechhofer@manchester.ac.uk

MANCHESTER 1824

Manchester

Knowledge Acquisition (KA)

- Operational definition
 - Given
 - a source of (declarative) knowledge
 - a sink
 - KA is the transfer of declarative statements from source to sink
 - we can generalise this to other sources, e.g., sensors
- We distinguish between KA and K refinement
 - i.e., modification of the statements in our sink
 - But this distinction is merely conceptual
 - · Actual processes are messy
- Range of automation
 - Fully manual (what we're going to do!)
 - (Fully) automated
 - · Possibly plus refinement
 - e.g., machine learning, text extraction

MANCHESTER From Knowing to Representation Source - A person, typically called the domain expert (DE, or "expert") • domain, subject matter, universe of discourse, area,... - Key features • They know a lot about the domain (coverage) • They are highly reliable about the domain (accuracy) • They know how to articulate domain knowledge - Though not always in the way we want! • They have good metaknowledge Immediate Sink - A document encoded in natural language or semi-NL Ultimate Sink - A document encoded in a formal/actionable KR language • I.e., an OWL Ontology! This KA is often called Knowledge Elicitation 3

MANCHESTER. **Eliciting Knowledge** • Proposal 1: Ask the expert nicely to write it all down • Problems: 1. They know too much 2. Much of what they know is tacit · Perhaps can give it on demand, but not spontaneously -I.e., it's there buthard to access • They can't describe it (well) 3. They know too little • E.g., application goals • Target representation constraints - E.g., the language • Their knowledge is incomplete - Though they maybe able to acquire or generate it 4. Expense • Busy and valuable people · They get bored 6

e Universit

The Knowledge Engineer (KE)

- Key Role
 - Expertise in KA
 - · E.g., elicitation
 - Knows the target formalism
 - Knows knowledge (and software) development
 - Tools, methodologies, requirements management, etc.
- Does not necessarily know the domain!
 - Though the KE may also be a DE
 - · Most DEs are not KEs
 - Though they may be convertible
 - May be able to "become (enough of an) expert"
 - E.g., if autodidact or good learner with access to classes
- Investment in the representation itself

7

MANCHESTER

he University

Elicitation Technique Requirements

- Minimise DE's time
 - Assume DE scarcity
 - Capture essential knowledge
 - · Including metaknowledge!
- Minimise DE's KE training and effort
 - Assume loads of tacit knowledge
 - Thus techniques must be able to capture it
- Support multiple sources
 - Multiple experts (get consensus?)
 - Experts might point to other sources (e.g., standard text)
- · KEs must understand enough
 - So, the techniques have to allow for KE domain learning
 - KRs reasonably accessible to non-experts
- Always assume DE not invested
 - I.e., that you care more about the KR, much more

University Manchest

Note on generalizability

- · Many KA techniques are very specific
 - Specific to source (e.g., learning from relational databases)
 - Specific to targets (e.g., learning a schema)
- Elicitation techniques are generally flexible
 - Arbitrary sources and sinks
 - In both domain and form
 - NL intermediaries help
 - "Parameterisable" is perhaps more accurate

9

MANCHESTER

Manchester Manchester

Elicitation Techniques

- Two major families
 - Pre-representation
 - Post-(initial)representation
- Pre-representation
 - Starting point! Experts interact with a KE
 - Focused on "protocols"
 - · A record of behavior
 - Protocol-generation
 - Protocol-analysis
- Post-representation (modelling)
 - Experts interact with a (proto)representation (& KE)
 - Testing and generating

Universit Nanchest

Pre-representation Techniques

- Protocol-generation
 - Often involves video or other recording
 - Interviews
 - · Structured or unstructured (e.g., brainstorming)
 - Observational
 - Reporting
 - Self or shadowing
 - Any non-interview observation
- Protocol-analysis
 - Typically done with transcripts or notes
 - · But direct video is fine
 - Convert protocols into protorepresentations
 - So, some modelling already!
- We can treat many things as protocols
 - E.g., Wikipedia articles, textbooks, papers, etc.

11

MANCHESTER

he University

Modelling Techniques

- (Often characterized by aspects of the target (OWL in our case))
- Being picky
 - Pedantic refinement
- Sorting techniques
 - are used for capturing the way people compare and order concepts, and can lead to the revelation of knowledge about classes, properties and priorities
- Hierarchy-generation techniques
 - such as laddering are used to build taxonomies or other hierarchical structures such as goal trees and decision networks.
- · Matrix-based techniques
 - involve the construction of grids indicating such things as problems encountered against possible solutions.
- Limited-information and constrained-processing tasks
 - are techniques that either limit the time and/or information available to the expert when performing tasks. For instance, the twenty-questions technique provides an efficient way of accessing the key information in a domain in a prioritised order.

Other Modelling Techniques

- Scenario descriptions
- Diagrams
- Problem solving
- Teaching
- Role Play
- Joint Observation
- Etc.

13

MANCHESTER

Example: An Animals Taxonomy

- Task:
 - generate a controlled vocab for an index of a children's book
- Domain:
 - Animals including (think of these as CQ)
 - Where they live
 - What they eat
 - Carnivores, herbivores and omnivores
 - · How dangerous they are
 - · How big they are
 - A bit of basic anatomy
 - » legs, wings, fins? skin, feathers, fur?
 - •••
 - (read the book!)
- Representation aspects
 - Hierarchical list with priorities

Universit

Sort of Knowledge

- "Declarative" Knowledge about Terms (or Concepts)
 - Aka Conceptual Knowledge
- Initial steps
 - Identify the domain and requirements
 - Collect the terms
 - · Gather together the terms that describe the objects in the domain.
 - · Analyse relevant sources
 - Documents
 - Manuals
 - Web resources
 - Interviews with Expert
- · We've done that!
- Now some modelling
 - Two techniques today!
 - · Card sorting
 - 3 card trick

17

MANCHESTER 1824

he University

Card Sorting!

- Card Sorting identifies similarities
 - A relatively informal procedure
 - Works best in small groups
- Write down each concept/idea on a card
 - 1. Organise them into piles
 - 2. Identify what the pile represents
 - New concepts! New card!
 - 3. Link the piles together
 - 4. Record the rationale and links
 - 5. Reflect
- Repeat!
 - Each time, note down the results of the sorting
 - Brainstorm different initial piles

Universit

Generative

- For elicitation, more is (generally) better
 - Within limits
 - Brainstormy
- Is critical knowledge tacit?
 - We can't easily know in advance
- Winnowing is crucial
 - Sometimes we elicit things which should be discarded
 - · And trigger the discarding of other things!
 - Better to know what we don't care to know!

21

MANCHESTER

Manchester Manchester

Knowledge Acquisition (KA)

- Operational definition
 - Given
 - a source of (propositional) knowledge
 - a sink
 - KA is the transfer of propositions from source to sink
- Elicitation (for terminological knowledge)
 - Initial Capture:
 - Source: People, "experts", "domain experts" (DE)
 - Sink: "Protocol" (record of behavior)
 - Term Extraction:
 - Source: Text (e.g., transcript, textbook, Wikipedia article)
 - Sink: List of terms (perhaps on cards)
 - Initial Regimentation:
 - · Source: List of terms (on cards!)
 - Sink: Proto-representation
 - Hierarchy of categorized, harmonised terms (with notes!)

MANCHESTER **Triadic Elicitation: The 3 card trick** Select 3 cards at random - Identify which 2 cards are the most similar? · Write down why (a similarity) - As a new term! • Write down why not like 3rd (a difference) - Another new term! Helps to determine the characteristics of our classes - Prompts us into identifying differences & similarities · There will always be two that are "closer" together · Although which two cards that is may differ - From person to person - From perspective to perspective - From round to round 25

University Manchest

20 Questions

- Like the game!
 - The KE picks an object/concept in the domain
 - The DE tries to guess it
 - · and asks a series of yes/no questions
 - "Is it an animal?" "Is it a vegetable?" "Is it a mineral?"
- KE notes the questions and their order
 - Can help determine key concepts, properties, etc.
 - · Animals, vegetables, and minerals!
 - Can help structure the domain
 - "Is it a living thing?", "an animal?", "a plant?"
- Note that the technique is not the game!
 - Goals are different!
 - We're very interested in the questions, not the answers per se

27

MANCHESTER

- University

Key Goal: Laddering

- Terms vary in generality
 - Tree vs. Plant
 - Dog vs. Rover
- Each sort may be implicit!
 - Goal: Flesh out the generality hierarchy
 - Get more specific (if too general)
 - Get more general (if mostly specific)
- How?
 - 1. Take a group and ask what they have in common
 - · During sorting or 3-card or directly
 - 2. Then investigate relations of new term
 - Siblings, missing children, and (eventually) parents (back to 1)

So! The Task

- Capture
 - Look at the Menu
- Extract
 - List of terms; put them on cards!
- Organise
 - Hierarchy
- Encode
 - OWL in Protégé

33

MANCHESTER

Coursework

- Take the KE done in class
 - Feel free to refine it further
- Encode it using Protege 4
 - Each category term becomes a class
 - Capture your hierarchy using subsumption/subclassing
- Submit your RDF/XML file
- Full description on Blackboard!