COMP62324 FamiLy HisTORY IN OWL
EDpITION 1.2

Robert Stevens, Sean Bechhofer and Uli Sattler

School of Computer Science
University of Manchester
Oxford Road
Manchester
United Kingdom
M13 9PL

March 20, 2017

COMP62342 Family History

Preamble

Licencing

The ‘Family History Exercises in OWL’ by Robert Stevens, Sean Bechhofer and Uli Sattler is licensed
under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Reporting Errors

This set of exercises will almost certainly contain errors, defects and infelicities. Please do report them
to jsean.bechhofer@manchester.ac.uk. Supplying some actual context in the form of words will help
in fixing any of these issues.

Acknowledgements

As well as the author list, many people have contributed to this work. Any contribution, such as reporting
bugs etc., is rewarded by an acknowledgement of contribution (in alphabetical order) when the authors
get around to adding them.

Patrick Koopman;

Matthew Horridge.

Nicolas Matentzoglu.

Margaret Stevens.

Conventions used in these exercises

e All OWL is written in Manchester Syntax;

e When we use FHKB entities within text, we use a sans serif typeface;

We use CamelCase for classes and property names;

Class names start with upper case;

{ec) EREEN

sean.bechhofer@manchester.ac.uk

COMP62342 Family History

e Individual names start with a lower case letter and internal underscores to break words;
e Property names usually start with ‘is” or ‘has’ and are CamelCase with a lower case initial letter.

e When there is some scary OWL or the reasoner may find the FHKB hard work, you will see a ‘here
be dragons’ imageﬂ

!The image comes from http://ancienthomeofdragon.homestead.com/ May 2012.

ii

http://ancienthomeofdragon.homestead.com/

COMP62342 Family History

Contents

1.2 Installing Protége|. . .

|I1.3 Create a first ontology|

2_Exercise 2|

iii

10

12

14

15

17

18

COMP62342 Family History

19

20

21

22

23

24

COMP62342 Family History

Introduction

These exercises in the Web Ontology Language (OWL) take participants through OWL from its basics to
some rather advanced features of the OWL DL profile of OWL. The exercises use family history as a topic
and much of the tutorial is based on the ‘Manchester Family History Advanced OWL Tutorial’ found at
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/. Here, in-
stead of an ‘advanced tutorial’, the exercises go from the start to quite a lot of what anyone using OWL
to model needs to know about the language and the use of an automated reasoner; the exercises do not
really explore much in the way of modelling issues.

These exercises don’t give any instruction in Protégé; for that use the Pizza tutorial at http://owl.
cs.manchester.ac.uk/tutorials/protegeowltutorial/. These exercises don’t give any explanation
behind the phenomena revealed during the exercises; these are explained by the human beings delivering
the exercises. More explanation can be found in the Pizza tutorial and the written, original, long version
of the Family History OWL tutorial is in Blackboard.

In these exercises we take an “objects (individuals) first” approach. Most tutorials concentrate on classes
then individuals (if at all). By doing it this way our aim is to emphasise that OWL is all about modelling
individuals—even if most axioms are restrictions upon classes that say ‘each and every individual in this
class holds at least one of these properties to an individual of the filler class’ Similarly, object properties
are relationships between two individuals, we just usually model at the class level and these sort of
distinctions can sometimes get lost. So, these exercises start with asserting lots of properties between
named individuals and only later do we start talking about classes of these individuals. It may be, and
probably will be, that most modelling is with classes and properties, but this way really emphasises what
the language is actually doing.

Subsequent material in the course unit will focus largely on classes and modelling with classes.
Once you have completed these exercises in the lab, you are recommended to work your way through the

Protege Pizza tutorial and the Family History OWL Tutorial. These will help you gain experience of the
mechanics of using Protégé and provide a further introduction to OWL 2.

e http://owl.cs.manchester.ac.uk/tutorials/protg-owl-tutorial/

e http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/|/contains
the ontologies, and the long version of the tutorial explanation is in Blackboard.

Learning outcomes

By the end of a successful completion of these exercises you should be able to:

http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protg-owl-tutorial/
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/

COMP62342 Family History

1. Understand the core aspects of OWL 2 syntax and semantics;

2. Use Protégé to build an ontology, and use an automated reasoner to draw inferences from the
axioms in your ontology;

Use classes and individuals;
Use OWL 2’s property hierarchy;
Use OWL 2’s property characteristics;

Know more than you need to about the famly history of Robert David Bright;

R S o

Know some of the limitations of OWL 2.

These learning outcomes are very generic; each exercise encapsulates a significant learning outcome. For
example, Exercise [9] has a learning outcome of: knowing how to use data properties; knowing about and
using the DifferentIndividuals axiom; a reinforcement of the use of the functional property characteristic;
and an introduction to qualified cardinality restrictions.

Assumptions

We make some simplifying assumptions in this tutorial:

e We assume people doing the exercises know nothing about OWL.

e We assume that there are human beings present that are knowledgeable about OWL to conduct
participants through the exercises and give explanations. You may need to ask these human beings
(or consult some other sources) to understand some of the terms used in this tutorial (e.g., “inverse”
or “transitive”).

e We take a conventional western view of family history. This appears to have most effects on naming
of sibling and cousin relationships.

e We take a straight-forward view on the sex of people; this is explored further in Chapter [7}

e We make no special treatment of time or dates; we are only interested in years and we do not do
anything fancy; this is explored more in Chapter [9}

At the end of the tutorial, you should be able to produce a property hierarchy and a TBox or class
hierarchy; all supported by use of Protégé, the automated reasoner, and a lot of OWL 2’s features.

How to use these exercises

Start at exercise one and work through to the last exercise. Don’t just read the exercises and think you
know what will happen; actually do it and you’ll learn more.

COMP62342 Family History

Chapter 1

Exercise 1

Task 1: Getting things started

—

. Install Protégé.
2. Install the matrix plugin.
3. Open a new ontology.

4. Remember to save your file often while working. . .

1.1 Notes

Your machines in the School have Protégé (version 4.3) installed under linux. The instructions below are
for use ‘off-site’.

1.2 Installing Protégé

Go to http://protege.stanford.edu/download/registered.html and download the platform inde-
pendent installer of Protégé Desktop (you do not have to register in order to download the software).
Select the appropriate one for your operating system. We recommend downloading it bundled with the
Java VM, to ensure compatibility. After the download is completed, run the installer and follow the
instructions, selecting the appropriate VM (either the one bundled with it or your default one). In the
labs we will be using version 4.3. There are updates also available on the site although the latest version
may be unstable and there could be issues with plugins.

Once the installation is completed, open Protégé and go to File » Check for plugins. Select the Matrix
views plugin, as shown on the screenshot towards the end of this chapter. Click install, wait until the
software asks for a restart, close and re-open Protégé.

http://protege.stanford.edu/download/registered.html

COMP62342 Family History

1.3 Create a first ontology

Select File » Save as, select either RDF/XML or OWL/XML, navigate to your preferred directory and
save the file using the name fhkb-x, replacing the x with your student user id (e.g. mbax1234). The
extension (*.owl) is put automatically. To be sure, go to File » Save, and do so frequently during your
upcoming modelling efforts, as Protégé is known to crash in the unlikeliest situations.

Save your work frequently!

COMP62342 Family History

¥

L] Automatic Update i

rDuwnIDads rLlpdates |

Im=tall | Mame | Current versian | Available version |
[Cloud views 114 =
Ol Example Plugin (Takbbed Subclasses) 1.1
Matrix: Wigws 112
] 0BO Toolke 111 1
[0SGiDebuy Flugin 1.010
[OutlineEsxiztertial Tree 1.1
[owil2Guery Plugin 0410 |
(] CWwLDiff Protege plugin 0.2.0 L
[rhid Piae A o

Plugin info

Authior: CO-0DE, The University of Manchester

License: hitp: Meeeesne gnuarglicensesicpl btml

Maitrix

The Watrix tabfviews plug-ins provide several spreadsheet-style wiews of an
ontology, including existential fillers, individual relationships, and an object
properiies wiew, You can use drag and drop to add columns and values,

Docutnentation

Version info -

Always check for updates on startup.

Instsl || Mot novy

COMP62342 Family History

Chapter 2

Exercise 2

Task 2: Create individuals

1. Load the initial ontology from the course unit home page (http://studentnet.cs.
manchester.ac.uk/pgt/COMP62342/fhkb) into Protégé.

2. The ontology is already populated with a number of individuals—those with embold-
ened names in table in Appendix [A} you may add more names if you wish. For each
individual, create an IRI fragment with the given names followed by family name,
followed by birth year, each separated by underscores.

3. The ontology also contains two object properties: hasFather and hasMother. The
individuals in the ontology already have assertions about these properties.

4. Run the reasoner.
5. Ask the DL query hasFather value David_Bright_1934 .
6. Add inverses for the two properties: isFatherOf and isMotherOf; run the reasoner.

7. Ask the DL query isMotherOf value Robert_David_Bright_1965 and isMotherOf value
David_Bright_1934 .

8. Save the ontology in a file called fhkb-x.owl, where x is your student user id. For
subsequent steps, remember to save the ontology frequently. We won’t remind you of
this in the notes!

http://studentnet.cs.manchester.ac.uk/pgt/COMP62342/fhkb
http://studentnet.cs.manchester.ac.uk/pgt/COMP62342/fhkb

COMP62342 Family History

Chapter 3

Exercise 3

Task 3: Create hasParent

1. Add another object property hasParent and its obvious inverse. Make hasParent a
super-property of hasMother and hasFather.

2. Run the reasoner.

3. Ask the DL queries: hasParent value David_Bright_1934 and hasParent value Mar-
garet_ Grace_Rever_1934 . Ask similar queries using the isParentOf property.

4. Look at the inferred object hierarchy and see the reasoner maintaining the ‘is’ side of
the hierarchy.

5. Write a DL query to find the grandparents of Robert David Bright. Specialise that
query to find Robert David Bright’s grandfathers.

COMP62342 Family History

Chapter 4

Exercise 4

Task 4: Finding ancestors and descendants

1. Add the object property hasAncestor and make it a super-property of hasParent.
2. Add its inverse hasDescendant.
Make hasAncestor transitive.

Run the reasoner.

ovok W

Ask the DL queries: hasDescendant value Robert__David_Bright_1965 and hasAncestor
value william_george_bright_1901. Check the answers against the table in Appendix[A]

6. Ask more queries and check your answers.

COMP62342 Family History

Chapter 5

Exercise 5 o

Task 5: Finding grandparents

1. Add the object properties hasGrandparent, hasGrandmother and hasGrandfather ar-
ranged in the obvious hierarchy.

2. Make hasGrandparent a sub-property of the appropriate property in the growing object
hierarchy.

3. Add the obvious ‘is’ inverses.

4. Add a sub-property chain hasParent o hasFather to the hasGrandfather property; do the
equivalent for hasGrandmother.

5. Run the reasoner (and look at the object hierarchy).
6. Ask DL queries about grandparents and grandchildren of various people.

7. Add in properties and sub-property chains for finding great grandparents. (you may
have to add some more individuals to test these properties.)

8. Run the reasoner and test with DL queries.

COMP62342 Family History

Chapter 6

Exercise 6

Task 6: Finding all blood relations

1. Add the object property hasBloodRelation to the object property hierarchy.
2. Is this property transitive?
3. What is this property’s inverse? It is its own inverse, so make it symmetric.

4. What is the sub-property chain that determines one’s blood relations? Add this sub-
property chain to hasBloodRelation.

5. Run the reasoner and test your answer.

6. One good test is to find the blood relations of the person furthest back in the hierarchy;
do we get his or her blood relations? How do we fix it? Ask a human being—we don’t
yvet know, in the ontology, that everyone has an ancestor; once we do know this, this
sub-property chain will work. We know as humans that everyone has parents; the
‘computer’ doesn’t know this yet—see Exercise [7]

7. Look at the object property hierarchy.

COMP62342 Family History

Chapter 7

Exercise 7 o

Task 7: Adding classes of individuals

1. Add the class Person to the FHKB.
2. Add the classes Sex, Male and Female; make Male and Female subclasses of Sex.
3. Add the object property hasSex; restrict the class Person to hasSex some Sex.

4. Make two classes Man and Woman. Make Man EquivalentTo: Person and hasSex some
Male and do the equivalent for Woman.

5. Run the reasoner.

6. Ask the DL query Male and Female; should this be possible? Make Male and Female
disjoint, run the reasoner and ask the query again.

7. Ask the DL query Sex and not (Male or Female); the answer suggests that there are
other ways of being a Sex than being either Male or Female. Stop this happening by
adding the covering axiom Sex EquivalentTo: Male or Female; run the reasoner and ask
the query again.

8. Ask the DL query Sex and not Female; find an explanation for the results.

9. Ask the DL query Man and Woman; is it possible for a person to be both a man and
a woman (according to our ontology)? Find out why this is possible or not.

10. Ask the DL query Person and not (Man or Woman), that is, is it possible to be a person
and neither a man nor a woman?

11. Ask the DL query Person and not Man; what do you find out?

12. Make the object property hasSex functional, run the reasoner and do all the queries
again.

13. Ask for an explanation of this inference.

10

COMP62342 Family History

Chapter 8

Exercise 8

Task 8: Domains and ranges

1. Run the reasoner and ask DL queries about who is a Man, Woman and Person; note
the answers.

2. Add the domain Person and range Man to hasFather and add the domain Person and
range Woman to hasMother.

3. Run the reasoner and inspect the object hierarchy to see what the reasoner has done
with the domains and ranges of the other properties; make any changes that are
necessary.

4. Ask DL queries about who is a Man, Woman and Person; note for whom we don’t have
a specific sex.

5. Write the following defined classes (using the equivalentTo: construct):

(a) Parent—All the individuals that are parents.

(b) A Grandparent class that uses the isGrandparentOf property and Grandparent2
that uses EquivalentTo: Person and (isParentOf some (Person and isParentOf some
Person)).

Run the reasoner, look to see where the classes are placed in the hierarchy and work
out why.

6. Add the restrictions hasFather some Man and hasMother some Woman to Person. Run
the reasoner and ask which individuals have a mother. Also ask the DL query for
which individuals have a grandmother. Ask for explanations.

7. Test the hasBloodRelation property again. This time you should see it working. this
is because we’ve now said everyone has a mother and everyone has a father, therefore
everyone has a parent and thus an ancester. If everyone can have an ancestor, then
everyone is someone’s descendent.

11

COMP62342 Family History

Chapter 9

Exercise 9 o

Task 9: Adding birth years

1. The model contains a data property hasBirthYear with a domain Person and range
integer.

2. Birth years from the data table have also been added for some individuals.

. Run the reasoner.

. If you have added more individuals yourself, add birth year information for them.
. Ask DL queries for people born after 1930, before 1970 and during the 1960s.

. Ask the DL query isParentOf min 3 Person; note the answer.

N o Ot s W

. Make hasBirthYear functional; run the reasoner and ask the query again. Ask the DL
query hasFather value peter_william_bright_1940—why doesn’t he have three children?

8. Make all individuals different, run the reasoner and ask the DL query isParentOf min
3 Person again; note the answer.

9. You should also make hasFather and hasMother functional; we want individuals of type
Person to have only one mother and father. Try giving a person more than one father,
run the reasoner and ask for an explanation of what happens.

12

COMP62342 Family History

Chapter 10

Exercise 10 o

Task 10: Finding siblings

1. Add an object property hasSibling at the appropriate place to the object property
hierarchy.

2. Decide whether it is symmetric and/or transitive.
Add the property chain that will find siblings.
Run the reasoner.

Ask the DL query hasSibling value Robert_David_Bright_1965 ; what’s the problem?

A S

Make hasSibling irreflexive, this should make it impossible for Robert David Bright to
be his own brother. What happens? ask for an explanation (from a human being).

7. Add two sub-properties for hasSibling: hasBrother and hasSister. Decide on the transi-
tivity, symmetry etc. for these properties and add an inverse property if you think it
appropriate.

8. What sub-property chains do we need to make hasBrother work? Remember that we
do not, as yet, know the sex of Robert David Bright and several other individuals.

9. The isFatherOf property has a range of Person; this will not determine the sex of a
father’s child. To fix this, make a property hierarchy of hasChild, hasSon and has-
Daughter; add the appropriate domains and ranges.

10. Use an EquivalentProperty axiom to tie hasChild to an appropriate existing object
property.

11. Add hasSon and hasDaughter assertions to the individuals.

12. Add sub-property chains to hasBrother and hasSister using these new properties; run
the reasoner and test the answers with DL queries.

13. Inspect the object hierarchy.

13

COMP62342 Family History

Chapter 11

Exercise 11

Task 11: Finding aunts and uncles

1. Add the object properties hasUncle and hasAunt, their domains, ranges and inverses
at the appropriate place in the object hierarchy.

2. An uncle is a parent’s brother (that is, a blood relation, not an ‘uncle-in-law); add a
sub-property chain to find uncles and a similar one to find aunts.

3. Run the reasoner and test with DL queries. Robert David Bright’s uncles are John
Bright and Peter William Bright; his aunt is Eileen Reever.

14

COMP62342 Family History

Chapter 12

Exercise 12

Task 12: Finding first cousins

1. Add the object property hasFirstCousin to the object property hierarchy at the appro-
priate place.

2. Decide whether it is transitive, symmetric (and add an inverse if necessary), then add
the appropriate domain and range.

3. A first cousin is one of a parent’s siblings children—or a person with a shared grand-
parent. Devise a sub-property chain to find first cousins. Robert David Bright’s first
cousins are Mark Bright, Ian Bright, Janet Bright, Willian Bright, James Bright, Clare
Bright, Julie Bright, Mark Heath and Nicholas heath.

4. Write a DL query to find the right answer.

5. Inspect the object hierarchy.

15

COMP62342 Family History

Chapter 13

Exercise 13

Task 13: In-laws: Modelling partnerships

1. Add the class Partnership to the FHKB as a sibling of Person and make it disjoint with
its primitive siblings.

2. Create the object properties hasParticipant, hasMaleParticipant and hasFemalePartici-
pant in the obvious object hierarchy, along with their inverses. Partnership is their
common domain and add the obvious ranges to these properties.

3. Add a restriction of hasParticipant min 2 Person to the Marriage class.

4. Create the object properties hasSpouse, hasWife and hasHusband and inverses where
appropriate (or use property characteristics when they are not). Use sub-property
chains to infer when two individuals are husband and wife. David Bright and Margaret
Grace Rever were married in 1958; create an individual for this marriage (you can add
a hasMarriageYear data property if you wish). John Bright and Joyce Gosport were
married in 1954. Add another individual for this marriage.

5. Run the reasoner and ask DL queries to test what you have done.

6. Create new object properties for in-laws-brother-in-law, sister-in-law (hint: these last
two have possible sub-property chains) and sibling-in-law. You can also now add
properties to find uncles- and aunts-in-law.

7. Run the reasoner, and ask DL queries to confirm that it all works.

8. Add these two property hierarchies to the main object property hierarchy, reason and
look at it.

16

COMP62342 Family History

Chapter 14

Exercise 14 o

Task 14: Finding parents with only sons

1. Ask the DL query isParentOf some Man; note the answer.

2. The query finds someone that has at least one son; we want a query that asks for
people that are parents of only sons.

3. Ask the DL query isParentOf only Man; note the answer. Are there any unusual
answers?

4. We need to ‘close off’ what people individuals are parents of. For David Bright
we do this with an axiom such as isParentOf only {Richard_John_Bright_1962 |,
Robert_David_Bright_1965 }. Add such axioms to your FHKB’s individuals (David
Bright, for instance, should have such an axiom.) and ask the questions again, noting
the answers. (note how fast the reasoner runs.)

5. Now write a defined class ParentOfOnlySons. this will be something like:

EquivalentTo: Person and isParentOf some Man and isParentOf only Man.

6. Run the reasoner; where is the class placed in the TBox; which individuals are members
of this class?

17

COMP62342 Family History

Chapter 15

Exercise 15 o

Task 15: Are sibling’s grandparents the same?

1. Make two defined classes GrandparentOfRobert and GrandparentOfRichard. Use the
pattern Person and EquivalentTo: isParentOf some (Person and isParentOf value x) where
x is either Robert_David_Bright_1965 or Richard_John_Bright_1962 .

2. Run the reasoner and find out if the two classes are found to be equivalent; they won’t
be, despite the fact Robert David Bright and Richard John Bright share parents and
therefore share the same grandparents.

3. It doesn’t work. If you add hasParent max 2 Person as a restriction to the class Person
(only as a necessary condition), re-run the reasoner, then everything will work. You’ll
see that the two classes have been inferred to be equivalent.

4. It’s all to do with openness; ask a human being or read the full FHKB manual.

18

COMP62342 Family History

Chapter 16

Exercise 16 o

Task 16: Grandparent as a defined class

1. Make the class Parent as EquivalentTo: Person and isParentOf some Person.

2. Make two defined classes, Grandparentl and Grandparent2; in one use the isGrand-
parentOf property and in the other use isParentOf some (Person and isParentOf some
Person).

3. Run the reasoner and look at the class hierarchy. Do both classes appear as subclasses
of Parent as they should (all grandparents are, by definition, parents) and are they
equivalent? think about it.

19

COMP62342 Family History

Chapter 17

Exercise 17 o

Task 17: Making a big class hierarchy

1. Add defined classes for the following (some may already exist):

e Son and Daughter;
e Brother and Sister;

e Cousin, FirstCousin, SecondCousin, FirstCousinOnceRemoved (and so on until
you get bored);

e InLaw, MotherInLaw, FatherInLaw and so on;
e Aunt, Uncle, UncleInLaw, and so on;
e GrandParent, Grandfather, GreatGrandparent, and so on;

2. Look at how the class hierarchy grows; its shape and any ‘unusual’ placements; use
explanation widely to check on your growing hierarchy.

3. Note what happens to the classes Son and Daughter in the hierarchy—why?

20

COMP62342 Family History

Appendix A

FHKB Family Data

21

panuUIU0I

TO6T YSiIg 98109 WeIIA 906T oY1y UST[H SLI] 1761 3g WEIIM 1939d IP6T 1S11g Wel[IA 1919d

C88T IoUDIY IopURXS[Y Soule[288T UJedH 19[0IA 6061 bl phats souref URULION] 606T IOUDIY SoTUR[URULION

2981 1Sy punwpy Liusy €98T 119MOH 9310[TRY) 6681 1Sg ®PY RION 6681 1YL Py RION

[¥eoH HoIa(] 6C6T 1049Y ATRJAL USDIH 7961 q¥eoHq SoLrey) SBIOUPIN 96T YreoH so[Ieyy) se[oydIN

0€61 Sy uyor 10dsopy aofor 9661 Sug suou TRy 9961 YSig SIeN

q¥eoH 3ate(d 6T61 10a0Y Are]y uso[ly 0961 q¥eoH Auoyyuy STRIN 0961 YyedH Auoyjuy >Ien

GB]T ToAdY MOQISY SO[Iey)) 68T PIema)g ©IATAS 19[0IA 7E61 1oAY 90RIN) 19103 IR TE6T 19A9Y 9deiIr) joJeSieN

poyads jou poyads jou 1281 U99IN) auou s1o] T.8T U99IK) SIOT]

981 1Sy punwpy L1usy €98T 11PMOH 0310[TRY) 068T 1SLag utor preuoo] 0681 MSLg uyor preuosry

€981 1ySug punwpy A1uol €98T 11oMOH 910TIeY) 7061 8g STuuIN Ua9T1e3] V06T 1USLIg SIUUIIN USR]

TP6T WS WeI[IA 19994 [0oJ ®ueI(q 9961 1Sug ouou ormnp 9961 Y3tig aynr

paymads jou paymads jou paymads jou 110dsoxn) auou aohor 110dsox) aoKop

C88T IOUDIY IOpUBXS[Y Soure[288T UIeaH 19[0IA 1261 YOIy auou oofor 1C6T IaYDIy 9o4or

paymads jou paymads jou €)8T prema)g K0T, uyor €187 pIema)g £odv], uyor

T06T YSiIg 98109 Wel[IA 906T P21y US[[H SM] 0€6T 1Sg ouou uqor 0€61 3g uyor

0€61 Sug uyor 110dsoxr) sohop 7961 Wsuyg auou jouef 7961 Slag jauer

€981 1Sy punwpy L1uof] €981 11oMOH 9110[IeY) 1681 1Sg quexy sourep 1681 143ty uop4ep] uelq souref

V6T WSBLIg WeIIA 19194 [0od eueliq Y961 1Sag ouou sowef $961 1ySlag ssurer

paymads jou paymads jou 2881 YOIy Iopuexaly sourep C88T IOUDIY ISopUBXS[Y Soure[

¢88T oY1y Iopuexoly souwre[L88T U1eoH 19[0IA 9061 PYdry US(TH SH] 906T oY1y US[[H SILIT

0€61 MSug uyor j10dsoy) eofor 6961 1Sag suou ue| 6961 3ig ueg

2981 WSLg punwpy] L1usf] €981 11omoH 110[IeY)) 1881 S punwpy Auey L88T W81 punwipy AIUs]

peyoads jou peyooads jou 29871 W3ug punwpy ATUof] 98T MSLg punwipy AIUOf]

2987 3L punwpy AIUSE] €98T 119MOH 9130[IRY)) 6881 WSug URETeRES | JoLIopaI] 68871 1YSLI 18qIaH OLIOPal]

C88T IoUo1Yy [opuexoly souref L88T U1eoH 19[0IA (411 oIy ouou P CI6T ORIV [P

peyoads jou peyooads jou 698T dosser sooueIq Ieqeziy 6981 dossop seouriq yleqeziy

GBYT I0AdY MOQIDY So[Iey)) 68T PIema)g BIATAS 19[0IA 6261 I9A9Y A1en U9y 6T6T I19A9Y ATeJ\ uoo[lyg

peymads jou paymads jou LT6T yyeoH auou oaI8(YyeaH oo1e(]

TO6T MSLIg 981005 UWrer[[IA\ 906T I9Y2TY ST SH] 7E6T sg suou praeQq $E€6T 3g piaeq

paymads jou paymads jou auou [ood auou RURI(] [ood euel(q

V6T YUSLIg Wer[IA 19994 [ood 'ueI(q 9961 Sy ouou ore[) 9961 1311g axe[)

paymads jou payads jou €98T 119MOY] auou a1107IRY D) €O]T 11OMI] 9930[TeT))

€981 YySug punwpy A1 €98T 11oMO o3j0TIey) 7681 Sg euef duroIR) oN0[IRYD) FEYT WS duRl duUI0IR]) 9)0[IRY))

0L8T oAy wrelipy - 6987 dossor seouelq yroqeziy G681 REVEY | 119qI0H safIey)) GBS I9A9Y IS So[Iey))

¢88T oY1y IopUueXoly souref L88T U1eoH 19[0IA LC6T TOYPIY uqor OV LC6T OY2IY UTO[99y
oureu oureu

Io)eq IO IeoA YyIIg owreu A[IWR] USAIS pPUOIDS USAIS IsITq uosIoq

€1STH. 9U3 Ul STENPIAIPUL JO 4T oY,

‘T'V 9Iq&L

22

peyoads jou

€981 YySug punwpy A1
0€61 Yysuyg uyor

€181 premo)g Loor], uyor
paymads jou

7E€61 SLg prae(

7E€61 1SLg prae(

paymads jou

€981 1PMOH oNolIeyyH
110dsoxr) aohop

TL8T Uo0L SI07]

paymads jou

PEGT I0A0Y 90RIK) joIe3IRIy
FEET ToAdY 90rRIr) joIe3IR\

0.8T
T06T
0L6T
V68T
L88T
G961
961

IoAY
1Sag
Sy

premols
qresH
Sy
1Sg

€1STH. 9U3 Ul STENPIAIPUL JO 4T oY,

auou
98100x)
auou
RIA[AG
auou
paed
uyor

‘T'V 9Iq&L

WwerIA
Wl
Wl
JO10IA
1910IA
110qOY
pregory

0L8T ToAdY WIEI[IM

T06T S1ag 93109y Wel[IA
0L6T MS1ag WelIM

V68T premorg eIA[AG J9[0IA
L8871 3o 1O[OIA

G961 311g prae(112qoYy
2961 WSig uyor preydry

23

	Exercise 1
	Notes
	Installing Protégé
	Create a first ontology

	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11
	Exercise 12
	Exercise 13
	Exercise 14
	Exercise 15
	Exercise 16
	Exercise 17
	FHKB Family Data

